Metamath Proof Explorer


Theorem 2pwuninel

Description: The power set of the power set of the union of a set does not belong to the set. This theorem provides a way of constructing a new set that doesn't belong to a given set. (Contributed by NM, 27-Jun-2008)

Ref Expression
Assertion 2pwuninel ¬ 𝒫 𝒫 𝐴𝐴

Proof

Step Hyp Ref Expression
1 sdomirr ¬ 𝒫 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴
2 elssuni ( 𝒫 𝒫 𝐴𝐴 → 𝒫 𝒫 𝐴 𝐴 )
3 ssdomg ( 𝐴 ∈ V → ( 𝒫 𝒫 𝐴 𝐴 → 𝒫 𝒫 𝐴 𝐴 ) )
4 canth2g ( 𝐴 ∈ V → 𝐴 ≺ 𝒫 𝐴 )
5 pwexb ( 𝐴 ∈ V ↔ 𝒫 𝐴 ∈ V )
6 canth2g ( 𝒫 𝐴 ∈ V → 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴 )
7 5 6 sylbi ( 𝐴 ∈ V → 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴 )
8 sdomtr ( ( 𝐴 ≺ 𝒫 𝐴 ∧ 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴 ) → 𝐴 ≺ 𝒫 𝒫 𝐴 )
9 4 7 8 syl2anc ( 𝐴 ∈ V → 𝐴 ≺ 𝒫 𝒫 𝐴 )
10 domsdomtr ( ( 𝒫 𝒫 𝐴 𝐴 𝐴 ≺ 𝒫 𝒫 𝐴 ) → 𝒫 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴 )
11 10 ex ( 𝒫 𝒫 𝐴 𝐴 → ( 𝐴 ≺ 𝒫 𝒫 𝐴 → 𝒫 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴 ) )
12 3 9 11 syl6ci ( 𝐴 ∈ V → ( 𝒫 𝒫 𝐴 𝐴 → 𝒫 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴 ) )
13 2 12 syl5 ( 𝐴 ∈ V → ( 𝒫 𝒫 𝐴𝐴 → 𝒫 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴 ) )
14 1 13 mtoi ( 𝐴 ∈ V → ¬ 𝒫 𝒫 𝐴𝐴 )
15 elex ( 𝒫 𝒫 𝐴𝐴 → 𝒫 𝒫 𝐴 ∈ V )
16 pwexb ( 𝒫 𝐴 ∈ V ↔ 𝒫 𝒫 𝐴 ∈ V )
17 5 16 bitri ( 𝐴 ∈ V ↔ 𝒫 𝒫 𝐴 ∈ V )
18 15 17 sylibr ( 𝒫 𝒫 𝐴𝐴 𝐴 ∈ V )
19 18 con3i ( ¬ 𝐴 ∈ V → ¬ 𝒫 𝒫 𝐴𝐴 )
20 14 19 pm2.61i ¬ 𝒫 𝒫 𝐴𝐴