Metamath Proof Explorer
Description: Comparing two decimal integers with three "digits" (unequal higher
places). (Contributed by AV, 8-Sep-2021)
|
|
Ref |
Expression |
|
Hypotheses |
3decltc.a |
⊢ 𝐴 ∈ ℕ0 |
|
|
3decltc.b |
⊢ 𝐵 ∈ ℕ0 |
|
|
3decltc.c |
⊢ 𝐶 ∈ ℕ0 |
|
|
3decltc.d |
⊢ 𝐷 ∈ ℕ0 |
|
|
3decltc.e |
⊢ 𝐸 ∈ ℕ0 |
|
|
3decltc.f |
⊢ 𝐹 ∈ ℕ0 |
|
|
3decltc.3 |
⊢ 𝐴 < 𝐵 |
|
|
3declth.1 |
⊢ 𝐶 ≤ 9 |
|
|
3declth.2 |
⊢ 𝐸 ≤ 9 |
|
Assertion |
3declth |
⊢ ; ; 𝐴 𝐶 𝐸 < ; ; 𝐵 𝐷 𝐹 |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
3decltc.a |
⊢ 𝐴 ∈ ℕ0 |
| 2 |
|
3decltc.b |
⊢ 𝐵 ∈ ℕ0 |
| 3 |
|
3decltc.c |
⊢ 𝐶 ∈ ℕ0 |
| 4 |
|
3decltc.d |
⊢ 𝐷 ∈ ℕ0 |
| 5 |
|
3decltc.e |
⊢ 𝐸 ∈ ℕ0 |
| 6 |
|
3decltc.f |
⊢ 𝐹 ∈ ℕ0 |
| 7 |
|
3decltc.3 |
⊢ 𝐴 < 𝐵 |
| 8 |
|
3declth.1 |
⊢ 𝐶 ≤ 9 |
| 9 |
|
3declth.2 |
⊢ 𝐸 ≤ 9 |
| 10 |
1 3
|
deccl |
⊢ ; 𝐴 𝐶 ∈ ℕ0 |
| 11 |
2 4
|
deccl |
⊢ ; 𝐵 𝐷 ∈ ℕ0 |
| 12 |
1 2 3 4 8 7
|
declth |
⊢ ; 𝐴 𝐶 < ; 𝐵 𝐷 |
| 13 |
10 11 5 6 9 12
|
declth |
⊢ ; ; 𝐴 𝐶 𝐸 < ; ; 𝐵 𝐷 𝐹 |