| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							3mix1 | 
							⊢ ( 𝜑  →  ( 𝜑  ∨  𝜒  ∨  𝜃 ) )  | 
						
						
							| 2 | 
							
								1
							 | 
							imim1i | 
							⊢ ( ( ( 𝜑  ∨  𝜒  ∨  𝜃 )  →  𝜓 )  →  ( 𝜑  →  𝜓 ) )  | 
						
						
							| 3 | 
							
								
							 | 
							3mix2 | 
							⊢ ( 𝜒  →  ( 𝜑  ∨  𝜒  ∨  𝜃 ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							imim1i | 
							⊢ ( ( ( 𝜑  ∨  𝜒  ∨  𝜃 )  →  𝜓 )  →  ( 𝜒  →  𝜓 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							3mix3 | 
							⊢ ( 𝜃  →  ( 𝜑  ∨  𝜒  ∨  𝜃 ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							imim1i | 
							⊢ ( ( ( 𝜑  ∨  𝜒  ∨  𝜃 )  →  𝜓 )  →  ( 𝜃  →  𝜓 ) )  | 
						
						
							| 7 | 
							
								2 4 6
							 | 
							3jca | 
							⊢ ( ( ( 𝜑  ∨  𝜒  ∨  𝜃 )  →  𝜓 )  →  ( ( 𝜑  →  𝜓 )  ∧  ( 𝜒  →  𝜓 )  ∧  ( 𝜃  →  𝜓 ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							3jao | 
							⊢ ( ( ( 𝜑  →  𝜓 )  ∧  ( 𝜒  →  𝜓 )  ∧  ( 𝜃  →  𝜓 ) )  →  ( ( 𝜑  ∨  𝜒  ∨  𝜃 )  →  𝜓 ) )  | 
						
						
							| 9 | 
							
								7 8
							 | 
							impbii | 
							⊢ ( ( ( 𝜑  ∨  𝜒  ∨  𝜃 )  →  𝜓 )  ↔  ( ( 𝜑  →  𝜓 )  ∧  ( 𝜒  →  𝜓 )  ∧  ( 𝜃  →  𝜓 ) ) )  |