Metamath Proof Explorer


Theorem 3lt7

Description: 3 is less than 7. (Contributed by Mario Carneiro, 15-Sep-2013)

Ref Expression
Assertion 3lt7 3 < 7

Proof

Step Hyp Ref Expression
1 3lt4 3 < 4
2 4lt7 4 < 7
3 3re 3 ∈ ℝ
4 4re 4 ∈ ℝ
5 7re 7 ∈ ℝ
6 3 4 5 lttri ( ( 3 < 4 ∧ 4 < 7 ) → 3 < 7 )
7 1 2 6 mp2an 3 < 7