| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1cnd |
⊢ ( 𝐴 ∈ ℂ → 1 ∈ ℂ ) |
| 2 |
|
3cn |
⊢ 3 ∈ ℂ |
| 3 |
2
|
a1i |
⊢ ( 𝐴 ∈ ℂ → 3 ∈ ℂ ) |
| 4 |
|
3ne0 |
⊢ 3 ≠ 0 |
| 5 |
|
divcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 3 ∈ ℂ ∧ 3 ≠ 0 ) → ( 𝐴 / 3 ) ∈ ℂ ) |
| 6 |
2 4 5
|
mp3an23 |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 / 3 ) ∈ ℂ ) |
| 7 |
1 3 6
|
adddird |
⊢ ( 𝐴 ∈ ℂ → ( ( 1 + 3 ) · ( 𝐴 / 3 ) ) = ( ( 1 · ( 𝐴 / 3 ) ) + ( 3 · ( 𝐴 / 3 ) ) ) ) |
| 8 |
|
1p3e4 |
⊢ ( 1 + 3 ) = 4 |
| 9 |
8
|
a1i |
⊢ ( 𝐴 ∈ ℂ → ( 1 + 3 ) = 4 ) |
| 10 |
9
|
oveq1d |
⊢ ( 𝐴 ∈ ℂ → ( ( 1 + 3 ) · ( 𝐴 / 3 ) ) = ( 4 · ( 𝐴 / 3 ) ) ) |
| 11 |
6
|
mullidd |
⊢ ( 𝐴 ∈ ℂ → ( 1 · ( 𝐴 / 3 ) ) = ( 𝐴 / 3 ) ) |
| 12 |
|
divcan2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 3 ∈ ℂ ∧ 3 ≠ 0 ) → ( 3 · ( 𝐴 / 3 ) ) = 𝐴 ) |
| 13 |
2 4 12
|
mp3an23 |
⊢ ( 𝐴 ∈ ℂ → ( 3 · ( 𝐴 / 3 ) ) = 𝐴 ) |
| 14 |
11 13
|
oveq12d |
⊢ ( 𝐴 ∈ ℂ → ( ( 1 · ( 𝐴 / 3 ) ) + ( 3 · ( 𝐴 / 3 ) ) ) = ( ( 𝐴 / 3 ) + 𝐴 ) ) |
| 15 |
7 10 14
|
3eqtr3rd |
⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 / 3 ) + 𝐴 ) = ( 4 · ( 𝐴 / 3 ) ) ) |