| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1cnd |
|- ( A e. CC -> 1 e. CC ) |
| 2 |
|
3cn |
|- 3 e. CC |
| 3 |
2
|
a1i |
|- ( A e. CC -> 3 e. CC ) |
| 4 |
|
3ne0 |
|- 3 =/= 0 |
| 5 |
|
divcl |
|- ( ( A e. CC /\ 3 e. CC /\ 3 =/= 0 ) -> ( A / 3 ) e. CC ) |
| 6 |
2 4 5
|
mp3an23 |
|- ( A e. CC -> ( A / 3 ) e. CC ) |
| 7 |
1 3 6
|
adddird |
|- ( A e. CC -> ( ( 1 + 3 ) x. ( A / 3 ) ) = ( ( 1 x. ( A / 3 ) ) + ( 3 x. ( A / 3 ) ) ) ) |
| 8 |
|
1p3e4 |
|- ( 1 + 3 ) = 4 |
| 9 |
8
|
a1i |
|- ( A e. CC -> ( 1 + 3 ) = 4 ) |
| 10 |
9
|
oveq1d |
|- ( A e. CC -> ( ( 1 + 3 ) x. ( A / 3 ) ) = ( 4 x. ( A / 3 ) ) ) |
| 11 |
6
|
mullidd |
|- ( A e. CC -> ( 1 x. ( A / 3 ) ) = ( A / 3 ) ) |
| 12 |
|
divcan2 |
|- ( ( A e. CC /\ 3 e. CC /\ 3 =/= 0 ) -> ( 3 x. ( A / 3 ) ) = A ) |
| 13 |
2 4 12
|
mp3an23 |
|- ( A e. CC -> ( 3 x. ( A / 3 ) ) = A ) |
| 14 |
11 13
|
oveq12d |
|- ( A e. CC -> ( ( 1 x. ( A / 3 ) ) + ( 3 x. ( A / 3 ) ) ) = ( ( A / 3 ) + A ) ) |
| 15 |
7 10 14
|
3eqtr3rd |
|- ( A e. CC -> ( ( A / 3 ) + A ) = ( 4 x. ( A / 3 ) ) ) |