Metamath Proof Explorer


Theorem 4atlem0ae

Description: Lemma for 4at . (Contributed by NM, 10-Jul-2012)

Ref Expression
Hypotheses 4at.l = ( le ‘ 𝐾 )
4at.j = ( join ‘ 𝐾 )
4at.a 𝐴 = ( Atoms ‘ 𝐾 )
Assertion 4atlem0ae ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) ) → ¬ 𝑄 ( 𝑃 𝑅 ) )

Proof

Step Hyp Ref Expression
1 4at.l = ( le ‘ 𝐾 )
2 4at.j = ( join ‘ 𝐾 )
3 4at.a 𝐴 = ( Atoms ‘ 𝐾 )
4 simp3r ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) ) → ¬ 𝑅 ( 𝑃 𝑄 ) )
5 simp1 ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) ) → 𝐾 ∈ HL )
6 simp22 ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) ) → 𝑄𝐴 )
7 simp23 ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) ) → 𝑅𝐴 )
8 simp21 ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) ) → 𝑃𝐴 )
9 simp3l ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) ) → 𝑃𝑄 )
10 9 necomd ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) ) → 𝑄𝑃 )
11 1 2 3 hlatexch1 ( ( 𝐾 ∈ HL ∧ ( 𝑄𝐴𝑅𝐴𝑃𝐴 ) ∧ 𝑄𝑃 ) → ( 𝑄 ( 𝑃 𝑅 ) → 𝑅 ( 𝑃 𝑄 ) ) )
12 5 6 7 8 10 11 syl131anc ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) ) → ( 𝑄 ( 𝑃 𝑅 ) → 𝑅 ( 𝑃 𝑄 ) ) )
13 4 12 mtod ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) ) → ¬ 𝑄 ( 𝑃 𝑅 ) )