Metamath Proof Explorer
		
		
		
		Description:  8 + 2 = 10.  (Contributed by NM, 5-Feb-2007)  (Revised by Stanislas Polu, 7-Apr-2020)  (Revised by AV, 6-Sep-2021)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
				
					 | 
					Assertion | 
					8p2e10 | 
					⊢  ( 8  +  2 )  =  ; 1 0  | 
				
			
		
		
			
				Proof
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							df-2 | 
							⊢ 2  =  ( 1  +  1 )  | 
						
						
							| 2 | 
							
								1
							 | 
							oveq2i | 
							⊢ ( 8  +  2 )  =  ( 8  +  ( 1  +  1 ) )  | 
						
						
							| 3 | 
							
								
							 | 
							8cn | 
							⊢ 8  ∈  ℂ  | 
						
						
							| 4 | 
							
								
							 | 
							ax-1cn | 
							⊢ 1  ∈  ℂ  | 
						
						
							| 5 | 
							
								3 4 4
							 | 
							addassi | 
							⊢ ( ( 8  +  1 )  +  1 )  =  ( 8  +  ( 1  +  1 ) )  | 
						
						
							| 6 | 
							
								2 5
							 | 
							eqtr4i | 
							⊢ ( 8  +  2 )  =  ( ( 8  +  1 )  +  1 )  | 
						
						
							| 7 | 
							
								
							 | 
							df-9 | 
							⊢ 9  =  ( 8  +  1 )  | 
						
						
							| 8 | 
							
								7
							 | 
							oveq1i | 
							⊢ ( 9  +  1 )  =  ( ( 8  +  1 )  +  1 )  | 
						
						
							| 9 | 
							
								
							 | 
							9p1e10 | 
							⊢ ( 9  +  1 )  =  ; 1 0  | 
						
						
							| 10 | 
							
								6 8 9
							 | 
							3eqtr2i | 
							⊢ ( 8  +  2 )  =  ; 1 0  |