Metamath Proof Explorer


Theorem abeq1i

Description: Equality of a class variable and a class abstraction (inference form). (Contributed by NM, 31-Jul-1994) (Proof shortened by Wolf Lammen, 15-Nov-2019)

Ref Expression
Hypothesis abeq1i.1 { 𝑥𝜑 } = 𝐴
Assertion abeq1i ( 𝜑𝑥𝐴 )

Proof

Step Hyp Ref Expression
1 abeq1i.1 { 𝑥𝜑 } = 𝐴
2 1 eqcomi 𝐴 = { 𝑥𝜑 }
3 2 abeq2i ( 𝑥𝐴𝜑 )
4 3 bicomi ( 𝜑𝑥𝐴 )