Step |
Hyp |
Ref |
Expression |
1 |
|
fveq2 |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) → ( abs ‘ 𝐴 ) = ( abs ‘ if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ) ) |
2 |
1
|
breq1d |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) → ( ( abs ‘ 𝐴 ) < ( abs ‘ 𝐵 ) ↔ ( abs ‘ if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ) < ( abs ‘ 𝐵 ) ) ) |
3 |
1
|
oveq1d |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) → ( ( abs ‘ 𝐴 ) ↑ 2 ) = ( ( abs ‘ if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ) ↑ 2 ) ) |
4 |
3
|
breq1d |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) → ( ( ( abs ‘ 𝐴 ) ↑ 2 ) < ( ( abs ‘ 𝐵 ) ↑ 2 ) ↔ ( ( abs ‘ if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ) ↑ 2 ) < ( ( abs ‘ 𝐵 ) ↑ 2 ) ) ) |
5 |
2 4
|
bibi12d |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) → ( ( ( abs ‘ 𝐴 ) < ( abs ‘ 𝐵 ) ↔ ( ( abs ‘ 𝐴 ) ↑ 2 ) < ( ( abs ‘ 𝐵 ) ↑ 2 ) ) ↔ ( ( abs ‘ if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ) < ( abs ‘ 𝐵 ) ↔ ( ( abs ‘ if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ) ↑ 2 ) < ( ( abs ‘ 𝐵 ) ↑ 2 ) ) ) ) |
6 |
|
fveq2 |
⊢ ( 𝐵 = if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) → ( abs ‘ 𝐵 ) = ( abs ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ) |
7 |
6
|
breq2d |
⊢ ( 𝐵 = if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) → ( ( abs ‘ if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ) < ( abs ‘ 𝐵 ) ↔ ( abs ‘ if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ) < ( abs ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ) ) |
8 |
|
oveq1 |
⊢ ( ( abs ‘ 𝐵 ) = ( abs ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) → ( ( abs ‘ 𝐵 ) ↑ 2 ) = ( ( abs ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ↑ 2 ) ) |
9 |
8
|
breq2d |
⊢ ( ( abs ‘ 𝐵 ) = ( abs ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) → ( ( ( abs ‘ if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ) ↑ 2 ) < ( ( abs ‘ 𝐵 ) ↑ 2 ) ↔ ( ( abs ‘ if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ) ↑ 2 ) < ( ( abs ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ↑ 2 ) ) ) |
10 |
6 9
|
syl |
⊢ ( 𝐵 = if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) → ( ( ( abs ‘ if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ) ↑ 2 ) < ( ( abs ‘ 𝐵 ) ↑ 2 ) ↔ ( ( abs ‘ if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ) ↑ 2 ) < ( ( abs ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ↑ 2 ) ) ) |
11 |
7 10
|
bibi12d |
⊢ ( 𝐵 = if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) → ( ( ( abs ‘ if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ) < ( abs ‘ 𝐵 ) ↔ ( ( abs ‘ if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ) ↑ 2 ) < ( ( abs ‘ 𝐵 ) ↑ 2 ) ) ↔ ( ( abs ‘ if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ) < ( abs ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ↔ ( ( abs ‘ if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ) ↑ 2 ) < ( ( abs ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ↑ 2 ) ) ) ) |
12 |
|
0cn |
⊢ 0 ∈ ℂ |
13 |
12
|
elimel |
⊢ if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ∈ ℂ |
14 |
12
|
elimel |
⊢ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ∈ ℂ |
15 |
13 14
|
abs2sqlti |
⊢ ( ( abs ‘ if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ) < ( abs ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ↔ ( ( abs ‘ if ( 𝐴 ∈ ℂ , 𝐴 , 0 ) ) ↑ 2 ) < ( ( abs ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ↑ 2 ) ) |
16 |
5 11 15
|
dedth2h |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( abs ‘ 𝐴 ) < ( abs ‘ 𝐵 ) ↔ ( ( abs ‘ 𝐴 ) ↑ 2 ) < ( ( abs ‘ 𝐵 ) ↑ 2 ) ) ) |