Step |
Hyp |
Ref |
Expression |
1 |
|
fveq2 |
|- ( A = if ( A e. CC , A , 0 ) -> ( abs ` A ) = ( abs ` if ( A e. CC , A , 0 ) ) ) |
2 |
1
|
breq1d |
|- ( A = if ( A e. CC , A , 0 ) -> ( ( abs ` A ) < ( abs ` B ) <-> ( abs ` if ( A e. CC , A , 0 ) ) < ( abs ` B ) ) ) |
3 |
1
|
oveq1d |
|- ( A = if ( A e. CC , A , 0 ) -> ( ( abs ` A ) ^ 2 ) = ( ( abs ` if ( A e. CC , A , 0 ) ) ^ 2 ) ) |
4 |
3
|
breq1d |
|- ( A = if ( A e. CC , A , 0 ) -> ( ( ( abs ` A ) ^ 2 ) < ( ( abs ` B ) ^ 2 ) <-> ( ( abs ` if ( A e. CC , A , 0 ) ) ^ 2 ) < ( ( abs ` B ) ^ 2 ) ) ) |
5 |
2 4
|
bibi12d |
|- ( A = if ( A e. CC , A , 0 ) -> ( ( ( abs ` A ) < ( abs ` B ) <-> ( ( abs ` A ) ^ 2 ) < ( ( abs ` B ) ^ 2 ) ) <-> ( ( abs ` if ( A e. CC , A , 0 ) ) < ( abs ` B ) <-> ( ( abs ` if ( A e. CC , A , 0 ) ) ^ 2 ) < ( ( abs ` B ) ^ 2 ) ) ) ) |
6 |
|
fveq2 |
|- ( B = if ( B e. CC , B , 0 ) -> ( abs ` B ) = ( abs ` if ( B e. CC , B , 0 ) ) ) |
7 |
6
|
breq2d |
|- ( B = if ( B e. CC , B , 0 ) -> ( ( abs ` if ( A e. CC , A , 0 ) ) < ( abs ` B ) <-> ( abs ` if ( A e. CC , A , 0 ) ) < ( abs ` if ( B e. CC , B , 0 ) ) ) ) |
8 |
|
oveq1 |
|- ( ( abs ` B ) = ( abs ` if ( B e. CC , B , 0 ) ) -> ( ( abs ` B ) ^ 2 ) = ( ( abs ` if ( B e. CC , B , 0 ) ) ^ 2 ) ) |
9 |
8
|
breq2d |
|- ( ( abs ` B ) = ( abs ` if ( B e. CC , B , 0 ) ) -> ( ( ( abs ` if ( A e. CC , A , 0 ) ) ^ 2 ) < ( ( abs ` B ) ^ 2 ) <-> ( ( abs ` if ( A e. CC , A , 0 ) ) ^ 2 ) < ( ( abs ` if ( B e. CC , B , 0 ) ) ^ 2 ) ) ) |
10 |
6 9
|
syl |
|- ( B = if ( B e. CC , B , 0 ) -> ( ( ( abs ` if ( A e. CC , A , 0 ) ) ^ 2 ) < ( ( abs ` B ) ^ 2 ) <-> ( ( abs ` if ( A e. CC , A , 0 ) ) ^ 2 ) < ( ( abs ` if ( B e. CC , B , 0 ) ) ^ 2 ) ) ) |
11 |
7 10
|
bibi12d |
|- ( B = if ( B e. CC , B , 0 ) -> ( ( ( abs ` if ( A e. CC , A , 0 ) ) < ( abs ` B ) <-> ( ( abs ` if ( A e. CC , A , 0 ) ) ^ 2 ) < ( ( abs ` B ) ^ 2 ) ) <-> ( ( abs ` if ( A e. CC , A , 0 ) ) < ( abs ` if ( B e. CC , B , 0 ) ) <-> ( ( abs ` if ( A e. CC , A , 0 ) ) ^ 2 ) < ( ( abs ` if ( B e. CC , B , 0 ) ) ^ 2 ) ) ) ) |
12 |
|
0cn |
|- 0 e. CC |
13 |
12
|
elimel |
|- if ( A e. CC , A , 0 ) e. CC |
14 |
12
|
elimel |
|- if ( B e. CC , B , 0 ) e. CC |
15 |
13 14
|
abs2sqlti |
|- ( ( abs ` if ( A e. CC , A , 0 ) ) < ( abs ` if ( B e. CC , B , 0 ) ) <-> ( ( abs ` if ( A e. CC , A , 0 ) ) ^ 2 ) < ( ( abs ` if ( B e. CC , B , 0 ) ) ^ 2 ) ) |
16 |
5 11 15
|
dedth2h |
|- ( ( A e. CC /\ B e. CC ) -> ( ( abs ` A ) < ( abs ` B ) <-> ( ( abs ` A ) ^ 2 ) < ( ( abs ` B ) ^ 2 ) ) ) |