Description: The Ackermann function at (5,0). (Contributed by AV, 9-May-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ackval50 | ⊢ ( ( Ack ‘ 5 ) ‘ 0 ) = ; ; ; ; 6 5 5 3 3 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-5 | ⊢ 5 = ( 4 + 1 ) | |
| 2 | 1 | fveq2i | ⊢ ( Ack ‘ 5 ) = ( Ack ‘ ( 4 + 1 ) ) |
| 3 | 2 | fveq1i | ⊢ ( ( Ack ‘ 5 ) ‘ 0 ) = ( ( Ack ‘ ( 4 + 1 ) ) ‘ 0 ) |
| 4 | 4nn0 | ⊢ 4 ∈ ℕ0 | |
| 5 | ackvalsuc0val | ⊢ ( 4 ∈ ℕ0 → ( ( Ack ‘ ( 4 + 1 ) ) ‘ 0 ) = ( ( Ack ‘ 4 ) ‘ 1 ) ) | |
| 6 | 4 5 | ax-mp | ⊢ ( ( Ack ‘ ( 4 + 1 ) ) ‘ 0 ) = ( ( Ack ‘ 4 ) ‘ 1 ) |
| 7 | ackval41 | ⊢ ( ( Ack ‘ 4 ) ‘ 1 ) = ; ; ; ; 6 5 5 3 3 | |
| 8 | 3 6 7 | 3eqtri | ⊢ ( ( Ack ‘ 5 ) ‘ 0 ) = ; ; ; ; 6 5 5 3 3 |