Description: The Ackermann function at (5,0). (Contributed by AV, 9-May-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ackval50 | |- ( ( Ack ` 5 ) ` 0 ) = ; ; ; ; 6 5 5 3 3 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-5 | |- 5 = ( 4 + 1 ) |
|
| 2 | 1 | fveq2i | |- ( Ack ` 5 ) = ( Ack ` ( 4 + 1 ) ) |
| 3 | 2 | fveq1i | |- ( ( Ack ` 5 ) ` 0 ) = ( ( Ack ` ( 4 + 1 ) ) ` 0 ) |
| 4 | 4nn0 | |- 4 e. NN0 |
|
| 5 | ackvalsuc0val | |- ( 4 e. NN0 -> ( ( Ack ` ( 4 + 1 ) ) ` 0 ) = ( ( Ack ` 4 ) ` 1 ) ) |
|
| 6 | 4 5 | ax-mp | |- ( ( Ack ` ( 4 + 1 ) ) ` 0 ) = ( ( Ack ` 4 ) ` 1 ) |
| 7 | ackval41 | |- ( ( Ack ` 4 ) ` 1 ) = ; ; ; ; 6 5 5 3 3 |
|
| 8 | 3 6 7 | 3eqtri | |- ( ( Ack ` 5 ) ` 0 ) = ; ; ; ; 6 5 5 3 3 |