Metamath Proof Explorer


Theorem acni3

Description: The property of being a choice set of length A . (Contributed by Mario Carneiro, 31-Aug-2015)

Ref Expression
Hypothesis acni3.1 ( 𝑦 = ( 𝑔𝑥 ) → ( 𝜑𝜓 ) )
Assertion acni3 ( ( 𝑋AC 𝐴 ∧ ∀ 𝑥𝐴𝑦𝑋 𝜑 ) → ∃ 𝑔 ( 𝑔 : 𝐴𝑋 ∧ ∀ 𝑥𝐴 𝜓 ) )

Proof

Step Hyp Ref Expression
1 acni3.1 ( 𝑦 = ( 𝑔𝑥 ) → ( 𝜑𝜓 ) )
2 rabn0 ( { 𝑦𝑋𝜑 } ≠ ∅ ↔ ∃ 𝑦𝑋 𝜑 )
3 2 biimpri ( ∃ 𝑦𝑋 𝜑 → { 𝑦𝑋𝜑 } ≠ ∅ )
4 ssrab2 { 𝑦𝑋𝜑 } ⊆ 𝑋
5 3 4 jctil ( ∃ 𝑦𝑋 𝜑 → ( { 𝑦𝑋𝜑 } ⊆ 𝑋 ∧ { 𝑦𝑋𝜑 } ≠ ∅ ) )
6 5 ralimi ( ∀ 𝑥𝐴𝑦𝑋 𝜑 → ∀ 𝑥𝐴 ( { 𝑦𝑋𝜑 } ⊆ 𝑋 ∧ { 𝑦𝑋𝜑 } ≠ ∅ ) )
7 acni2 ( ( 𝑋AC 𝐴 ∧ ∀ 𝑥𝐴 ( { 𝑦𝑋𝜑 } ⊆ 𝑋 ∧ { 𝑦𝑋𝜑 } ≠ ∅ ) ) → ∃ 𝑔 ( 𝑔 : 𝐴𝑋 ∧ ∀ 𝑥𝐴 ( 𝑔𝑥 ) ∈ { 𝑦𝑋𝜑 } ) )
8 6 7 sylan2 ( ( 𝑋AC 𝐴 ∧ ∀ 𝑥𝐴𝑦𝑋 𝜑 ) → ∃ 𝑔 ( 𝑔 : 𝐴𝑋 ∧ ∀ 𝑥𝐴 ( 𝑔𝑥 ) ∈ { 𝑦𝑋𝜑 } ) )
9 1 elrab ( ( 𝑔𝑥 ) ∈ { 𝑦𝑋𝜑 } ↔ ( ( 𝑔𝑥 ) ∈ 𝑋𝜓 ) )
10 9 simprbi ( ( 𝑔𝑥 ) ∈ { 𝑦𝑋𝜑 } → 𝜓 )
11 10 ralimi ( ∀ 𝑥𝐴 ( 𝑔𝑥 ) ∈ { 𝑦𝑋𝜑 } → ∀ 𝑥𝐴 𝜓 )
12 11 anim2i ( ( 𝑔 : 𝐴𝑋 ∧ ∀ 𝑥𝐴 ( 𝑔𝑥 ) ∈ { 𝑦𝑋𝜑 } ) → ( 𝑔 : 𝐴𝑋 ∧ ∀ 𝑥𝐴 𝜓 ) )
13 12 eximi ( ∃ 𝑔 ( 𝑔 : 𝐴𝑋 ∧ ∀ 𝑥𝐴 ( 𝑔𝑥 ) ∈ { 𝑦𝑋𝜑 } ) → ∃ 𝑔 ( 𝑔 : 𝐴𝑋 ∧ ∀ 𝑥𝐴 𝜓 ) )
14 8 13 syl ( ( 𝑋AC 𝐴 ∧ ∀ 𝑥𝐴𝑦𝑋 𝜑 ) → ∃ 𝑔 ( 𝑔 : 𝐴𝑋 ∧ ∀ 𝑥𝐴 𝜓 ) )