Step |
Hyp |
Ref |
Expression |
1 |
|
riinrab |
⊢ ( 𝒫 𝑋 ∩ ∩ 𝑏 ∈ 𝐾 { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑐 ∈ 𝑎 𝐸 ∈ 𝑎 } ) = { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑏 ∈ 𝐾 ∀ 𝑐 ∈ 𝑎 𝐸 ∈ 𝑎 } |
2 |
|
mreacs |
⊢ ( 𝑋 ∈ 𝑉 → ( ACS ‘ 𝑋 ) ∈ ( Moore ‘ 𝒫 𝑋 ) ) |
3 |
|
acsfn1 |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑐 ∈ 𝑋 𝐸 ∈ 𝑋 ) → { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑐 ∈ 𝑎 𝐸 ∈ 𝑎 } ∈ ( ACS ‘ 𝑋 ) ) |
4 |
3
|
ex |
⊢ ( 𝑋 ∈ 𝑉 → ( ∀ 𝑐 ∈ 𝑋 𝐸 ∈ 𝑋 → { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑐 ∈ 𝑎 𝐸 ∈ 𝑎 } ∈ ( ACS ‘ 𝑋 ) ) ) |
5 |
4
|
ralimdv |
⊢ ( 𝑋 ∈ 𝑉 → ( ∀ 𝑏 ∈ 𝐾 ∀ 𝑐 ∈ 𝑋 𝐸 ∈ 𝑋 → ∀ 𝑏 ∈ 𝐾 { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑐 ∈ 𝑎 𝐸 ∈ 𝑎 } ∈ ( ACS ‘ 𝑋 ) ) ) |
6 |
5
|
imp |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑏 ∈ 𝐾 ∀ 𝑐 ∈ 𝑋 𝐸 ∈ 𝑋 ) → ∀ 𝑏 ∈ 𝐾 { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑐 ∈ 𝑎 𝐸 ∈ 𝑎 } ∈ ( ACS ‘ 𝑋 ) ) |
7 |
|
mreriincl |
⊢ ( ( ( ACS ‘ 𝑋 ) ∈ ( Moore ‘ 𝒫 𝑋 ) ∧ ∀ 𝑏 ∈ 𝐾 { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑐 ∈ 𝑎 𝐸 ∈ 𝑎 } ∈ ( ACS ‘ 𝑋 ) ) → ( 𝒫 𝑋 ∩ ∩ 𝑏 ∈ 𝐾 { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑐 ∈ 𝑎 𝐸 ∈ 𝑎 } ) ∈ ( ACS ‘ 𝑋 ) ) |
8 |
2 6 7
|
syl2an2r |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑏 ∈ 𝐾 ∀ 𝑐 ∈ 𝑋 𝐸 ∈ 𝑋 ) → ( 𝒫 𝑋 ∩ ∩ 𝑏 ∈ 𝐾 { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑐 ∈ 𝑎 𝐸 ∈ 𝑎 } ) ∈ ( ACS ‘ 𝑋 ) ) |
9 |
1 8
|
eqeltrrid |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑏 ∈ 𝐾 ∀ 𝑐 ∈ 𝑋 𝐸 ∈ 𝑋 ) → { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑏 ∈ 𝐾 ∀ 𝑐 ∈ 𝑎 𝐸 ∈ 𝑎 } ∈ ( ACS ‘ 𝑋 ) ) |