Metamath Proof Explorer


Theorem acsfn1c

Description: Algebraicity of a one-argument closure condition with additional constant. (Contributed by Stefan O'Rear, 3-Apr-2015)

Ref Expression
Assertion acsfn1c ( ( 𝑋𝑉 ∧ ∀ 𝑏𝐾𝑐𝑋 𝐸𝑋 ) → { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑏𝐾𝑐𝑎 𝐸𝑎 } ∈ ( ACS ‘ 𝑋 ) )

Proof

Step Hyp Ref Expression
1 riinrab ( 𝒫 𝑋 𝑏𝐾 { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑐𝑎 𝐸𝑎 } ) = { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑏𝐾𝑐𝑎 𝐸𝑎 }
2 mreacs ( 𝑋𝑉 → ( ACS ‘ 𝑋 ) ∈ ( Moore ‘ 𝒫 𝑋 ) )
3 acsfn1 ( ( 𝑋𝑉 ∧ ∀ 𝑐𝑋 𝐸𝑋 ) → { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑐𝑎 𝐸𝑎 } ∈ ( ACS ‘ 𝑋 ) )
4 3 ex ( 𝑋𝑉 → ( ∀ 𝑐𝑋 𝐸𝑋 → { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑐𝑎 𝐸𝑎 } ∈ ( ACS ‘ 𝑋 ) ) )
5 4 ralimdv ( 𝑋𝑉 → ( ∀ 𝑏𝐾𝑐𝑋 𝐸𝑋 → ∀ 𝑏𝐾 { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑐𝑎 𝐸𝑎 } ∈ ( ACS ‘ 𝑋 ) ) )
6 5 imp ( ( 𝑋𝑉 ∧ ∀ 𝑏𝐾𝑐𝑋 𝐸𝑋 ) → ∀ 𝑏𝐾 { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑐𝑎 𝐸𝑎 } ∈ ( ACS ‘ 𝑋 ) )
7 mreriincl ( ( ( ACS ‘ 𝑋 ) ∈ ( Moore ‘ 𝒫 𝑋 ) ∧ ∀ 𝑏𝐾 { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑐𝑎 𝐸𝑎 } ∈ ( ACS ‘ 𝑋 ) ) → ( 𝒫 𝑋 𝑏𝐾 { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑐𝑎 𝐸𝑎 } ) ∈ ( ACS ‘ 𝑋 ) )
8 2 6 7 syl2an2r ( ( 𝑋𝑉 ∧ ∀ 𝑏𝐾𝑐𝑋 𝐸𝑋 ) → ( 𝒫 𝑋 𝑏𝐾 { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑐𝑎 𝐸𝑎 } ) ∈ ( ACS ‘ 𝑋 ) )
9 1 8 eqeltrrid ( ( 𝑋𝑉 ∧ ∀ 𝑏𝐾𝑐𝑋 𝐸𝑋 ) → { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑏𝐾𝑐𝑎 𝐸𝑎 } ∈ ( ACS ‘ 𝑋 ) )