Metamath Proof Explorer


Theorem acsfn1c

Description: Algebraicity of a one-argument closure condition with additional constant. (Contributed by Stefan O'Rear, 3-Apr-2015)

Ref Expression
Assertion acsfn1c XVbKcXEXa𝒫X|bKcaEaACSX

Proof

Step Hyp Ref Expression
1 riinrab 𝒫XbKa𝒫X|caEa=a𝒫X|bKcaEa
2 mreacs XVACSXMoore𝒫X
3 acsfn1 XVcXEXa𝒫X|caEaACSX
4 3 ex XVcXEXa𝒫X|caEaACSX
5 4 ralimdv XVbKcXEXbKa𝒫X|caEaACSX
6 5 imp XVbKcXEXbKa𝒫X|caEaACSX
7 mreriincl ACSXMoore𝒫XbKa𝒫X|caEaACSX𝒫XbKa𝒫X|caEaACSX
8 2 6 7 syl2an2r XVbKcXEX𝒫XbKa𝒫X|caEaACSX
9 1 8 eqeltrrid XVbKcXEXa𝒫X|bKcaEaACSX