Metamath Proof Explorer


Theorem acsfn1

Description: Algebraicity of a one-argument closure condition. (Contributed by Stefan O'Rear, 3-Apr-2015)

Ref Expression
Assertion acsfn1 XVbXEXa𝒫X|baEaACSX

Proof

Step Hyp Ref Expression
1 elpwi a𝒫XaX
2 ralss aXbaEabXbaEa
3 1 2 syl a𝒫XbaEabXbaEa
4 vex bV
5 4 snss baba
6 5 imbi1i baEabaEa
7 6 ralbii bXbaEabXbaEa
8 3 7 bitrdi a𝒫XbaEabXbaEa
9 8 rabbiia a𝒫X|baEa=a𝒫X|bXbaEa
10 riinrab 𝒫XbXa𝒫X|baEa=a𝒫X|bXbaEa
11 9 10 eqtr4i a𝒫X|baEa=𝒫XbXa𝒫X|baEa
12 mreacs XVACSXMoore𝒫X
13 simpll XVbXEXXV
14 simpr XVbXEXEX
15 snssi bXbX
16 15 ad2antlr XVbXEXbX
17 snfi bFin
18 17 a1i XVbXEXbFin
19 acsfn XVEXbXbFina𝒫X|baEaACSX
20 13 14 16 18 19 syl22anc XVbXEXa𝒫X|baEaACSX
21 20 ex XVbXEXa𝒫X|baEaACSX
22 21 ralimdva XVbXEXbXa𝒫X|baEaACSX
23 22 imp XVbXEXbXa𝒫X|baEaACSX
24 mreriincl ACSXMoore𝒫XbXa𝒫X|baEaACSX𝒫XbXa𝒫X|baEaACSX
25 12 23 24 syl2an2r XVbXEX𝒫XbXa𝒫X|baEaACSX
26 11 25 eqeltrid XVbXEXa𝒫X|baEaACSX