Description: The axiom of choice implies the ultrafilter lemma. (Contributed by Mario Carneiro, 26-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | acufl | ⊢ ( CHOICE → UFL = V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex | ⊢ 𝑥 ∈ V | |
| 2 | 1 | pwex | ⊢ 𝒫 𝑥 ∈ V |
| 3 | 2 | pwex | ⊢ 𝒫 𝒫 𝑥 ∈ V |
| 4 | dfac10 | ⊢ ( CHOICE ↔ dom card = V ) | |
| 5 | 4 | biimpi | ⊢ ( CHOICE → dom card = V ) |
| 6 | 3 5 | eleqtrrid | ⊢ ( CHOICE → 𝒫 𝒫 𝑥 ∈ dom card ) |
| 7 | numufl | ⊢ ( 𝒫 𝒫 𝑥 ∈ dom card → 𝑥 ∈ UFL ) | |
| 8 | 6 7 | syl | ⊢ ( CHOICE → 𝑥 ∈ UFL ) |
| 9 | 1 | a1i | ⊢ ( CHOICE → 𝑥 ∈ V ) |
| 10 | 8 9 | 2thd | ⊢ ( CHOICE → ( 𝑥 ∈ UFL ↔ 𝑥 ∈ V ) ) |
| 11 | 10 | eqrdv | ⊢ ( CHOICE → UFL = V ) |