Description: The axiom of choice implies the ultrafilter lemma. (Contributed by Mario Carneiro, 26-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | acufl | |- ( CHOICE -> UFL = _V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex | |- x e. _V |
|
| 2 | 1 | pwex | |- ~P x e. _V |
| 3 | 2 | pwex | |- ~P ~P x e. _V |
| 4 | dfac10 | |- ( CHOICE <-> dom card = _V ) |
|
| 5 | 4 | biimpi | |- ( CHOICE -> dom card = _V ) |
| 6 | 3 5 | eleqtrrid | |- ( CHOICE -> ~P ~P x e. dom card ) |
| 7 | numufl | |- ( ~P ~P x e. dom card -> x e. UFL ) |
|
| 8 | 6 7 | syl | |- ( CHOICE -> x e. UFL ) |
| 9 | 1 | a1i | |- ( CHOICE -> x e. _V ) |
| 10 | 8 9 | 2thd | |- ( CHOICE -> ( x e. UFL <-> x e. _V ) ) |
| 11 | 10 | eqrdv | |- ( CHOICE -> UFL = _V ) |