| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pinn | ⊢ ( 𝐴  ∈  N  →  𝐴  ∈  ω ) | 
						
							| 2 |  | pinn | ⊢ ( 𝐵  ∈  N  →  𝐵  ∈  ω ) | 
						
							| 3 |  | nnacom | ⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω )  →  ( 𝐴  +o  𝐵 )  =  ( 𝐵  +o  𝐴 ) ) | 
						
							| 4 | 1 2 3 | syl2an | ⊢ ( ( 𝐴  ∈  N  ∧  𝐵  ∈  N )  →  ( 𝐴  +o  𝐵 )  =  ( 𝐵  +o  𝐴 ) ) | 
						
							| 5 |  | addpiord | ⊢ ( ( 𝐴  ∈  N  ∧  𝐵  ∈  N )  →  ( 𝐴  +N  𝐵 )  =  ( 𝐴  +o  𝐵 ) ) | 
						
							| 6 |  | addpiord | ⊢ ( ( 𝐵  ∈  N  ∧  𝐴  ∈  N )  →  ( 𝐵  +N  𝐴 )  =  ( 𝐵  +o  𝐴 ) ) | 
						
							| 7 | 6 | ancoms | ⊢ ( ( 𝐴  ∈  N  ∧  𝐵  ∈  N )  →  ( 𝐵  +N  𝐴 )  =  ( 𝐵  +o  𝐴 ) ) | 
						
							| 8 | 4 5 7 | 3eqtr4d | ⊢ ( ( 𝐴  ∈  N  ∧  𝐵  ∈  N )  →  ( 𝐴  +N  𝐵 )  =  ( 𝐵  +N  𝐴 ) ) | 
						
							| 9 |  | dmaddpi | ⊢ dom   +N   =  ( N  ×  N ) | 
						
							| 10 | 9 | ndmovcom | ⊢ ( ¬  ( 𝐴  ∈  N  ∧  𝐵  ∈  N )  →  ( 𝐴  +N  𝐵 )  =  ( 𝐵  +N  𝐴 ) ) | 
						
							| 11 | 8 10 | pm2.61i | ⊢ ( 𝐴  +N  𝐵 )  =  ( 𝐵  +N  𝐴 ) |