Metamath Proof Explorer


Theorem adddmmbl

Description: If two functions have domains in the sigma-algebra, the domain of their addition also belongs to the sigma-algebra. This is the first statement of Proposition 121H of Fremlin1, p. 39. Note: While the theorem in the book assumes the functions are sigma-measurable, this assumption is unnecessary for the part concerning their addition. (Contributed by Glauco Siliprandi, 30-Dec-2024)

Ref Expression
Hypotheses adddmmbl.1 𝑥 𝜑
adddmmbl.2 𝑥 𝐴
adddmmbl.3 𝑥 𝐵
adddmmbl.4 ( 𝜑𝑆 ∈ SAlg )
adddmmbl.5 ( 𝜑𝐴𝑆 )
adddmmbl.6 ( 𝜑𝐵𝑆 )
Assertion adddmmbl ( 𝜑 → dom ( 𝑥 ∈ ( 𝐴𝐵 ) ↦ ( 𝐶 + 𝐷 ) ) ∈ 𝑆 )

Proof

Step Hyp Ref Expression
1 adddmmbl.1 𝑥 𝜑
2 adddmmbl.2 𝑥 𝐴
3 adddmmbl.3 𝑥 𝐵
4 adddmmbl.4 ( 𝜑𝑆 ∈ SAlg )
5 adddmmbl.5 ( 𝜑𝐴𝑆 )
6 adddmmbl.6 ( 𝜑𝐵𝑆 )
7 2 3 nfin 𝑥 ( 𝐴𝐵 )
8 eqid ( 𝑥 ∈ ( 𝐴𝐵 ) ↦ ( 𝐶 + 𝐷 ) ) = ( 𝑥 ∈ ( 𝐴𝐵 ) ↦ ( 𝐶 + 𝐷 ) )
9 ovexd ( ( 𝜑𝑥 ∈ ( 𝐴𝐵 ) ) → ( 𝐶 + 𝐷 ) ∈ V )
10 1 7 8 9 dmmptdff ( 𝜑 → dom ( 𝑥 ∈ ( 𝐴𝐵 ) ↦ ( 𝐶 + 𝐷 ) ) = ( 𝐴𝐵 ) )
11 4 5 6 salincld ( 𝜑 → ( 𝐴𝐵 ) ∈ 𝑆 )
12 10 11 eqeltrd ( 𝜑 → dom ( 𝑥 ∈ ( 𝐴𝐵 ) ↦ ( 𝐶 + 𝐷 ) ) ∈ 𝑆 )