Metamath Proof Explorer


Theorem adddmmbl

Description: If two functions have domains in the sigma-algebra, the domain of their addition also belongs to the sigma-algebra. This is the first statement of Proposition 121H of Fremlin1, p. 39. Note: While the theorem in the book assumes the functions are sigma-measurable, this assumption is unnecessary for the part concerning their addition. (Contributed by Glauco Siliprandi, 30-Dec-2024)

Ref Expression
Hypotheses adddmmbl.1 x φ
adddmmbl.2 _ x A
adddmmbl.3 _ x B
adddmmbl.4 φ S SAlg
adddmmbl.5 φ A S
adddmmbl.6 φ B S
Assertion adddmmbl φ dom x A B C + D S

Proof

Step Hyp Ref Expression
1 adddmmbl.1 x φ
2 adddmmbl.2 _ x A
3 adddmmbl.3 _ x B
4 adddmmbl.4 φ S SAlg
5 adddmmbl.5 φ A S
6 adddmmbl.6 φ B S
7 2 3 nfin _ x A B
8 eqid x A B C + D = x A B C + D
9 ovexd φ x A B C + D V
10 1 7 8 9 dmmptdff φ dom x A B C + D = A B
11 4 5 6 salincld φ A B S
12 10 11 eqeltrd φ dom x A B C + D S