| Step | Hyp | Ref | Expression | 
						
							| 1 |  | negsub | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( 𝐴  +  - 𝐵 )  =  ( 𝐴  −  𝐵 ) ) | 
						
							| 2 | 1 | eqcomd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( 𝐴  −  𝐵 )  =  ( 𝐴  +  - 𝐵 ) ) | 
						
							| 3 | 2 | eqeq2d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( ( 𝐴  +  𝐵 )  =  ( 𝐴  −  𝐵 )  ↔  ( 𝐴  +  𝐵 )  =  ( 𝐴  +  - 𝐵 ) ) ) | 
						
							| 4 |  | negcl | ⊢ ( 𝐵  ∈  ℂ  →  - 𝐵  ∈  ℂ ) | 
						
							| 5 | 4 | adantl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  - 𝐵  ∈  ℂ ) | 
						
							| 6 |  | addcan | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  - 𝐵  ∈  ℂ )  →  ( ( 𝐴  +  𝐵 )  =  ( 𝐴  +  - 𝐵 )  ↔  𝐵  =  - 𝐵 ) ) | 
						
							| 7 | 5 6 | mpd3an3 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( ( 𝐴  +  𝐵 )  =  ( 𝐴  +  - 𝐵 )  ↔  𝐵  =  - 𝐵 ) ) | 
						
							| 8 |  | eqneg | ⊢ ( 𝐵  ∈  ℂ  →  ( 𝐵  =  - 𝐵  ↔  𝐵  =  0 ) ) | 
						
							| 9 | 8 | adantl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( 𝐵  =  - 𝐵  ↔  𝐵  =  0 ) ) | 
						
							| 10 | 3 7 9 | 3bitrd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( ( 𝐴  +  𝐵 )  =  ( 𝐴  −  𝐵 )  ↔  𝐵  =  0 ) ) |