| Step | Hyp | Ref | Expression | 
						
							| 1 |  | negsub |  |-  ( ( A e. CC /\ B e. CC ) -> ( A + -u B ) = ( A - B ) ) | 
						
							| 2 | 1 | eqcomd |  |-  ( ( A e. CC /\ B e. CC ) -> ( A - B ) = ( A + -u B ) ) | 
						
							| 3 | 2 | eqeq2d |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) = ( A - B ) <-> ( A + B ) = ( A + -u B ) ) ) | 
						
							| 4 |  | negcl |  |-  ( B e. CC -> -u B e. CC ) | 
						
							| 5 | 4 | adantl |  |-  ( ( A e. CC /\ B e. CC ) -> -u B e. CC ) | 
						
							| 6 |  | addcan |  |-  ( ( A e. CC /\ B e. CC /\ -u B e. CC ) -> ( ( A + B ) = ( A + -u B ) <-> B = -u B ) ) | 
						
							| 7 | 5 6 | mpd3an3 |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) = ( A + -u B ) <-> B = -u B ) ) | 
						
							| 8 |  | eqneg |  |-  ( B e. CC -> ( B = -u B <-> B = 0 ) ) | 
						
							| 9 | 8 | adantl |  |-  ( ( A e. CC /\ B e. CC ) -> ( B = -u B <-> B = 0 ) ) | 
						
							| 10 | 3 7 9 | 3bitrd |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) = ( A - B ) <-> B = 0 ) ) |