| Step |
Hyp |
Ref |
Expression |
| 1 |
|
negsub |
|- ( ( A e. CC /\ B e. CC ) -> ( A + -u B ) = ( A - B ) ) |
| 2 |
1
|
eqcomd |
|- ( ( A e. CC /\ B e. CC ) -> ( A - B ) = ( A + -u B ) ) |
| 3 |
2
|
eqeq2d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) = ( A - B ) <-> ( A + B ) = ( A + -u B ) ) ) |
| 4 |
|
negcl |
|- ( B e. CC -> -u B e. CC ) |
| 5 |
4
|
adantl |
|- ( ( A e. CC /\ B e. CC ) -> -u B e. CC ) |
| 6 |
|
addcan |
|- ( ( A e. CC /\ B e. CC /\ -u B e. CC ) -> ( ( A + B ) = ( A + -u B ) <-> B = -u B ) ) |
| 7 |
5 6
|
mpd3an3 |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) = ( A + -u B ) <-> B = -u B ) ) |
| 8 |
|
eqneg |
|- ( B e. CC -> ( B = -u B <-> B = 0 ) ) |
| 9 |
8
|
adantl |
|- ( ( A e. CC /\ B e. CC ) -> ( B = -u B <-> B = 0 ) ) |
| 10 |
3 7 9
|
3bitrd |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) = ( A - B ) <-> B = 0 ) ) |