| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1p1times |
⊢ ( 𝐴 ∈ ℂ → ( ( 1 + 1 ) · 𝐴 ) = ( 𝐴 + 𝐴 ) ) |
| 2 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 3 |
2 2
|
addcli |
⊢ ( 1 + 1 ) ∈ ℂ |
| 4 |
3
|
mul01i |
⊢ ( ( 1 + 1 ) · 0 ) = 0 |
| 5 |
|
negid |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 + - 𝐴 ) = 0 ) |
| 6 |
4 5
|
eqtr4id |
⊢ ( 𝐴 ∈ ℂ → ( ( 1 + 1 ) · 0 ) = ( 𝐴 + - 𝐴 ) ) |
| 7 |
1 6
|
eqeq12d |
⊢ ( 𝐴 ∈ ℂ → ( ( ( 1 + 1 ) · 𝐴 ) = ( ( 1 + 1 ) · 0 ) ↔ ( 𝐴 + 𝐴 ) = ( 𝐴 + - 𝐴 ) ) ) |
| 8 |
|
id |
⊢ ( 𝐴 ∈ ℂ → 𝐴 ∈ ℂ ) |
| 9 |
|
0cnd |
⊢ ( 𝐴 ∈ ℂ → 0 ∈ ℂ ) |
| 10 |
3
|
a1i |
⊢ ( 𝐴 ∈ ℂ → ( 1 + 1 ) ∈ ℂ ) |
| 11 |
|
1re |
⊢ 1 ∈ ℝ |
| 12 |
11 11
|
readdcli |
⊢ ( 1 + 1 ) ∈ ℝ |
| 13 |
|
0lt1 |
⊢ 0 < 1 |
| 14 |
11 11 13 13
|
addgt0ii |
⊢ 0 < ( 1 + 1 ) |
| 15 |
12 14
|
gt0ne0ii |
⊢ ( 1 + 1 ) ≠ 0 |
| 16 |
15
|
a1i |
⊢ ( 𝐴 ∈ ℂ → ( 1 + 1 ) ≠ 0 ) |
| 17 |
8 9 10 16
|
mulcand |
⊢ ( 𝐴 ∈ ℂ → ( ( ( 1 + 1 ) · 𝐴 ) = ( ( 1 + 1 ) · 0 ) ↔ 𝐴 = 0 ) ) |
| 18 |
|
negcl |
⊢ ( 𝐴 ∈ ℂ → - 𝐴 ∈ ℂ ) |
| 19 |
8 8 18
|
addcand |
⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 + 𝐴 ) = ( 𝐴 + - 𝐴 ) ↔ 𝐴 = - 𝐴 ) ) |
| 20 |
7 17 19
|
3bitr3rd |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 = - 𝐴 ↔ 𝐴 = 0 ) ) |