| Step |
Hyp |
Ref |
Expression |
| 1 |
|
alxfr.1 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) |
| 2 |
1
|
spcgv |
⊢ ( 𝐴 ∈ 𝐵 → ( ∀ 𝑥 𝜑 → 𝜓 ) ) |
| 3 |
2
|
com12 |
⊢ ( ∀ 𝑥 𝜑 → ( 𝐴 ∈ 𝐵 → 𝜓 ) ) |
| 4 |
3
|
alimdv |
⊢ ( ∀ 𝑥 𝜑 → ( ∀ 𝑦 𝐴 ∈ 𝐵 → ∀ 𝑦 𝜓 ) ) |
| 5 |
4
|
com12 |
⊢ ( ∀ 𝑦 𝐴 ∈ 𝐵 → ( ∀ 𝑥 𝜑 → ∀ 𝑦 𝜓 ) ) |
| 6 |
5
|
adantr |
⊢ ( ( ∀ 𝑦 𝐴 ∈ 𝐵 ∧ ∀ 𝑥 ∃ 𝑦 𝑥 = 𝐴 ) → ( ∀ 𝑥 𝜑 → ∀ 𝑦 𝜓 ) ) |
| 7 |
|
nfa1 |
⊢ Ⅎ 𝑦 ∀ 𝑦 𝜓 |
| 8 |
|
nfv |
⊢ Ⅎ 𝑦 𝜑 |
| 9 |
|
sp |
⊢ ( ∀ 𝑦 𝜓 → 𝜓 ) |
| 10 |
9 1
|
syl5ibrcom |
⊢ ( ∀ 𝑦 𝜓 → ( 𝑥 = 𝐴 → 𝜑 ) ) |
| 11 |
7 8 10
|
exlimd |
⊢ ( ∀ 𝑦 𝜓 → ( ∃ 𝑦 𝑥 = 𝐴 → 𝜑 ) ) |
| 12 |
11
|
alimdv |
⊢ ( ∀ 𝑦 𝜓 → ( ∀ 𝑥 ∃ 𝑦 𝑥 = 𝐴 → ∀ 𝑥 𝜑 ) ) |
| 13 |
12
|
com12 |
⊢ ( ∀ 𝑥 ∃ 𝑦 𝑥 = 𝐴 → ( ∀ 𝑦 𝜓 → ∀ 𝑥 𝜑 ) ) |
| 14 |
13
|
adantl |
⊢ ( ( ∀ 𝑦 𝐴 ∈ 𝐵 ∧ ∀ 𝑥 ∃ 𝑦 𝑥 = 𝐴 ) → ( ∀ 𝑦 𝜓 → ∀ 𝑥 𝜑 ) ) |
| 15 |
6 14
|
impbid |
⊢ ( ( ∀ 𝑦 𝐴 ∈ 𝐵 ∧ ∀ 𝑥 ∃ 𝑦 𝑥 = 𝐴 ) → ( ∀ 𝑥 𝜑 ↔ ∀ 𝑦 𝜓 ) ) |