Metamath Proof Explorer


Theorem andiff

Description: Adding biconditional when antecedents are conjuncted. (Contributed by metakunt, 16-Apr-2024)

Ref Expression
Hypotheses andiff.1 ( 𝜑 → ( 𝜒𝜃 ) )
andiff.2 ( 𝜓 → ( 𝜃𝜒 ) )
Assertion andiff ( ( 𝜑𝜓 ) → ( 𝜒𝜃 ) )

Proof

Step Hyp Ref Expression
1 andiff.1 ( 𝜑 → ( 𝜒𝜃 ) )
2 andiff.2 ( 𝜓 → ( 𝜃𝜒 ) )
3 1 2 anim12i ( ( 𝜑𝜓 ) → ( ( 𝜒𝜃 ) ∧ ( 𝜃𝜒 ) ) )
4 dfbi2 ( ( 𝜒𝜃 ) ↔ ( ( 𝜒𝜃 ) ∧ ( 𝜃𝜒 ) ) )
5 3 4 sylibr ( ( 𝜑𝜓 ) → ( 𝜒𝜃 ) )