Description: Adding biconditional when antecedents are conjuncted. (Contributed by metakunt, 16-Apr-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | andiff.1 | ⊢ ( 𝜑 → ( 𝜒 → 𝜃 ) ) | |
andiff.2 | ⊢ ( 𝜓 → ( 𝜃 → 𝜒 ) ) | ||
Assertion | andiff | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝜒 ↔ 𝜃 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | andiff.1 | ⊢ ( 𝜑 → ( 𝜒 → 𝜃 ) ) | |
2 | andiff.2 | ⊢ ( 𝜓 → ( 𝜃 → 𝜒 ) ) | |
3 | 1 2 | anim12i | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝜒 → 𝜃 ) ∧ ( 𝜃 → 𝜒 ) ) ) |
4 | dfbi2 | ⊢ ( ( 𝜒 ↔ 𝜃 ) ↔ ( ( 𝜒 → 𝜃 ) ∧ ( 𝜃 → 𝜒 ) ) ) | |
5 | 3 4 | sylibr | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝜒 ↔ 𝜃 ) ) |