Description: Adding biconditional when antecedents are conjuncted. (Contributed by metakunt, 16-Apr-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | andiff.1 | |- ( ph -> ( ch -> th ) ) |
|
andiff.2 | |- ( ps -> ( th -> ch ) ) |
||
Assertion | andiff | |- ( ( ph /\ ps ) -> ( ch <-> th ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | andiff.1 | |- ( ph -> ( ch -> th ) ) |
|
2 | andiff.2 | |- ( ps -> ( th -> ch ) ) |
|
3 | 1 2 | anim12i | |- ( ( ph /\ ps ) -> ( ( ch -> th ) /\ ( th -> ch ) ) ) |
4 | dfbi2 | |- ( ( ch <-> th ) <-> ( ( ch -> th ) /\ ( th -> ch ) ) ) |
|
5 | 3 4 | sylibr | |- ( ( ph /\ ps ) -> ( ch <-> th ) ) |