| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2cn |
|- 2 e. CC |
| 2 |
|
nn0cn |
|- ( x e. NN0 -> x e. CC ) |
| 3 |
|
mulcl |
|- ( ( 2 e. CC /\ x e. CC ) -> ( 2 x. x ) e. CC ) |
| 4 |
1 2 3
|
sylancr |
|- ( x e. NN0 -> ( 2 x. x ) e. CC ) |
| 5 |
|
ax-1cn |
|- 1 e. CC |
| 6 |
|
addass |
|- ( ( ( 2 x. x ) e. CC /\ 2 e. CC /\ 1 e. CC ) -> ( ( ( 2 x. x ) + 2 ) + 1 ) = ( ( 2 x. x ) + ( 2 + 1 ) ) ) |
| 7 |
1 5 6
|
mp3an23 |
|- ( ( 2 x. x ) e. CC -> ( ( ( 2 x. x ) + 2 ) + 1 ) = ( ( 2 x. x ) + ( 2 + 1 ) ) ) |
| 8 |
4 7
|
syl |
|- ( x e. NN0 -> ( ( ( 2 x. x ) + 2 ) + 1 ) = ( ( 2 x. x ) + ( 2 + 1 ) ) ) |
| 9 |
|
df-3 |
|- 3 = ( 2 + 1 ) |
| 10 |
9
|
a1i |
|- ( x e. NN0 -> 3 = ( 2 + 1 ) ) |
| 11 |
10
|
oveq2d |
|- ( x e. NN0 -> ( ( 2 x. x ) + 3 ) = ( ( 2 x. x ) + ( 2 + 1 ) ) ) |
| 12 |
8 11
|
eqtr4d |
|- ( x e. NN0 -> ( ( ( 2 x. x ) + 2 ) + 1 ) = ( ( 2 x. x ) + 3 ) ) |
| 13 |
12
|
fveq2d |
|- ( x e. NN0 -> ( ! ` ( ( ( 2 x. x ) + 2 ) + 1 ) ) = ( ! ` ( ( 2 x. x ) + 3 ) ) ) |
| 14 |
|
2nn0 |
|- 2 e. NN0 |
| 15 |
|
nn0mulcl |
|- ( ( 2 e. NN0 /\ x e. NN0 ) -> ( 2 x. x ) e. NN0 ) |
| 16 |
14 15
|
mpan |
|- ( x e. NN0 -> ( 2 x. x ) e. NN0 ) |
| 17 |
|
nn0addcl |
|- ( ( ( 2 x. x ) e. NN0 /\ 2 e. NN0 ) -> ( ( 2 x. x ) + 2 ) e. NN0 ) |
| 18 |
14 17
|
mpan2 |
|- ( ( 2 x. x ) e. NN0 -> ( ( 2 x. x ) + 2 ) e. NN0 ) |
| 19 |
16 18
|
syl |
|- ( x e. NN0 -> ( ( 2 x. x ) + 2 ) e. NN0 ) |
| 20 |
|
facp1 |
|- ( ( ( 2 x. x ) + 2 ) e. NN0 -> ( ! ` ( ( ( 2 x. x ) + 2 ) + 1 ) ) = ( ( ! ` ( ( 2 x. x ) + 2 ) ) x. ( ( ( 2 x. x ) + 2 ) + 1 ) ) ) |
| 21 |
19 20
|
syl |
|- ( x e. NN0 -> ( ! ` ( ( ( 2 x. x ) + 2 ) + 1 ) ) = ( ( ! ` ( ( 2 x. x ) + 2 ) ) x. ( ( ( 2 x. x ) + 2 ) + 1 ) ) ) |
| 22 |
13 21
|
eqtr3d |
|- ( x e. NN0 -> ( ! ` ( ( 2 x. x ) + 3 ) ) = ( ( ! ` ( ( 2 x. x ) + 2 ) ) x. ( ( ( 2 x. x ) + 2 ) + 1 ) ) ) |
| 23 |
12
|
oveq2d |
|- ( x e. NN0 -> ( ( ! ` ( ( 2 x. x ) + 2 ) ) x. ( ( ( 2 x. x ) + 2 ) + 1 ) ) = ( ( ! ` ( ( 2 x. x ) + 2 ) ) x. ( ( 2 x. x ) + 3 ) ) ) |
| 24 |
22 23
|
eqtrd |
|- ( x e. NN0 -> ( ! ` ( ( 2 x. x ) + 3 ) ) = ( ( ! ` ( ( 2 x. x ) + 2 ) ) x. ( ( 2 x. x ) + 3 ) ) ) |
| 25 |
|
addass |
|- ( ( ( 2 x. x ) e. CC /\ 1 e. CC /\ 1 e. CC ) -> ( ( ( 2 x. x ) + 1 ) + 1 ) = ( ( 2 x. x ) + ( 1 + 1 ) ) ) |
| 26 |
5 5 25
|
mp3an23 |
|- ( ( 2 x. x ) e. CC -> ( ( ( 2 x. x ) + 1 ) + 1 ) = ( ( 2 x. x ) + ( 1 + 1 ) ) ) |
| 27 |
4 26
|
syl |
|- ( x e. NN0 -> ( ( ( 2 x. x ) + 1 ) + 1 ) = ( ( 2 x. x ) + ( 1 + 1 ) ) ) |
| 28 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
| 29 |
28
|
a1i |
|- ( x e. NN0 -> 2 = ( 1 + 1 ) ) |
| 30 |
29
|
oveq2d |
|- ( x e. NN0 -> ( ( 2 x. x ) + 2 ) = ( ( 2 x. x ) + ( 1 + 1 ) ) ) |
| 31 |
27 30
|
eqtr4d |
|- ( x e. NN0 -> ( ( ( 2 x. x ) + 1 ) + 1 ) = ( ( 2 x. x ) + 2 ) ) |
| 32 |
31
|
fveq2d |
|- ( x e. NN0 -> ( ! ` ( ( ( 2 x. x ) + 1 ) + 1 ) ) = ( ! ` ( ( 2 x. x ) + 2 ) ) ) |
| 33 |
|
peano2nn0 |
|- ( ( 2 x. x ) e. NN0 -> ( ( 2 x. x ) + 1 ) e. NN0 ) |
| 34 |
16 33
|
syl |
|- ( x e. NN0 -> ( ( 2 x. x ) + 1 ) e. NN0 ) |
| 35 |
|
facp1 |
|- ( ( ( 2 x. x ) + 1 ) e. NN0 -> ( ! ` ( ( ( 2 x. x ) + 1 ) + 1 ) ) = ( ( ! ` ( ( 2 x. x ) + 1 ) ) x. ( ( ( 2 x. x ) + 1 ) + 1 ) ) ) |
| 36 |
34 35
|
syl |
|- ( x e. NN0 -> ( ! ` ( ( ( 2 x. x ) + 1 ) + 1 ) ) = ( ( ! ` ( ( 2 x. x ) + 1 ) ) x. ( ( ( 2 x. x ) + 1 ) + 1 ) ) ) |
| 37 |
32 36
|
eqtr3d |
|- ( x e. NN0 -> ( ! ` ( ( 2 x. x ) + 2 ) ) = ( ( ! ` ( ( 2 x. x ) + 1 ) ) x. ( ( ( 2 x. x ) + 1 ) + 1 ) ) ) |
| 38 |
31
|
oveq2d |
|- ( x e. NN0 -> ( ( ! ` ( ( 2 x. x ) + 1 ) ) x. ( ( ( 2 x. x ) + 1 ) + 1 ) ) = ( ( ! ` ( ( 2 x. x ) + 1 ) ) x. ( ( 2 x. x ) + 2 ) ) ) |
| 39 |
37 38
|
eqtrd |
|- ( x e. NN0 -> ( ! ` ( ( 2 x. x ) + 2 ) ) = ( ( ! ` ( ( 2 x. x ) + 1 ) ) x. ( ( 2 x. x ) + 2 ) ) ) |
| 40 |
39
|
oveq1d |
|- ( x e. NN0 -> ( ( ! ` ( ( 2 x. x ) + 2 ) ) x. ( ( 2 x. x ) + 3 ) ) = ( ( ( ! ` ( ( 2 x. x ) + 1 ) ) x. ( ( 2 x. x ) + 2 ) ) x. ( ( 2 x. x ) + 3 ) ) ) |
| 41 |
40
|
eqeq2d |
|- ( x e. NN0 -> ( ( ! ` ( ( 2 x. x ) + 3 ) ) = ( ( ! ` ( ( 2 x. x ) + 2 ) ) x. ( ( 2 x. x ) + 3 ) ) <-> ( ! ` ( ( 2 x. x ) + 3 ) ) = ( ( ( ! ` ( ( 2 x. x ) + 1 ) ) x. ( ( 2 x. x ) + 2 ) ) x. ( ( 2 x. x ) + 3 ) ) ) ) |
| 42 |
24 41
|
mpbid |
|- ( x e. NN0 -> ( ! ` ( ( 2 x. x ) + 3 ) ) = ( ( ( ! ` ( ( 2 x. x ) + 1 ) ) x. ( ( 2 x. x ) + 2 ) ) x. ( ( 2 x. x ) + 3 ) ) ) |
| 43 |
|
faccl |
|- ( ( ( 2 x. x ) + 1 ) e. NN0 -> ( ! ` ( ( 2 x. x ) + 1 ) ) e. NN ) |
| 44 |
34 43
|
syl |
|- ( x e. NN0 -> ( ! ` ( ( 2 x. x ) + 1 ) ) e. NN ) |
| 45 |
|
nncn |
|- ( ( ! ` ( ( 2 x. x ) + 1 ) ) e. NN -> ( ! ` ( ( 2 x. x ) + 1 ) ) e. CC ) |
| 46 |
44 45
|
syl |
|- ( x e. NN0 -> ( ! ` ( ( 2 x. x ) + 1 ) ) e. CC ) |
| 47 |
|
addcl |
|- ( ( ( 2 x. x ) e. CC /\ 2 e. CC ) -> ( ( 2 x. x ) + 2 ) e. CC ) |
| 48 |
4 1 47
|
sylancl |
|- ( x e. NN0 -> ( ( 2 x. x ) + 2 ) e. CC ) |
| 49 |
|
3cn |
|- 3 e. CC |
| 50 |
|
addcl |
|- ( ( ( 2 x. x ) e. CC /\ 3 e. CC ) -> ( ( 2 x. x ) + 3 ) e. CC ) |
| 51 |
4 49 50
|
sylancl |
|- ( x e. NN0 -> ( ( 2 x. x ) + 3 ) e. CC ) |
| 52 |
|
mulass |
|- ( ( ( ! ` ( ( 2 x. x ) + 1 ) ) e. CC /\ ( ( 2 x. x ) + 2 ) e. CC /\ ( ( 2 x. x ) + 3 ) e. CC ) -> ( ( ( ! ` ( ( 2 x. x ) + 1 ) ) x. ( ( 2 x. x ) + 2 ) ) x. ( ( 2 x. x ) + 3 ) ) = ( ( ! ` ( ( 2 x. x ) + 1 ) ) x. ( ( ( 2 x. x ) + 2 ) x. ( ( 2 x. x ) + 3 ) ) ) ) |
| 53 |
46 48 51 52
|
syl3anc |
|- ( x e. NN0 -> ( ( ( ! ` ( ( 2 x. x ) + 1 ) ) x. ( ( 2 x. x ) + 2 ) ) x. ( ( 2 x. x ) + 3 ) ) = ( ( ! ` ( ( 2 x. x ) + 1 ) ) x. ( ( ( 2 x. x ) + 2 ) x. ( ( 2 x. x ) + 3 ) ) ) ) |
| 54 |
42 53
|
eqtrd |
|- ( x e. NN0 -> ( ! ` ( ( 2 x. x ) + 3 ) ) = ( ( ! ` ( ( 2 x. x ) + 1 ) ) x. ( ( ( 2 x. x ) + 2 ) x. ( ( 2 x. x ) + 3 ) ) ) ) |