| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prodsplit.1 |  |-  ( ph -> M e. ZZ ) | 
						
							| 2 |  | prodsplit.2 |  |-  ( ph -> N e. ZZ ) | 
						
							| 3 |  | prodsplit.3 |  |-  ( ph -> M <_ N ) | 
						
							| 4 |  | prodsplit.4 |  |-  ( ph -> K e. NN0 ) | 
						
							| 5 |  | prodsplit.5 |  |-  ( ( ph /\ k e. ( M ... ( N + K ) ) ) -> A e. CC ) | 
						
							| 6 | 2 | zred |  |-  ( ph -> N e. RR ) | 
						
							| 7 | 6 | ltp1d |  |-  ( ph -> N < ( N + 1 ) ) | 
						
							| 8 |  | fzdisj |  |-  ( N < ( N + 1 ) -> ( ( M ... N ) i^i ( ( N + 1 ) ... ( N + K ) ) ) = (/) ) | 
						
							| 9 | 7 8 | syl |  |-  ( ph -> ( ( M ... N ) i^i ( ( N + 1 ) ... ( N + K ) ) ) = (/) ) | 
						
							| 10 | 4 | nn0zd |  |-  ( ph -> K e. ZZ ) | 
						
							| 11 | 2 10 | zaddcld |  |-  ( ph -> ( N + K ) e. ZZ ) | 
						
							| 12 |  | nn0addge1 |  |-  ( ( N e. RR /\ K e. NN0 ) -> N <_ ( N + K ) ) | 
						
							| 13 | 6 4 12 | syl2anc |  |-  ( ph -> N <_ ( N + K ) ) | 
						
							| 14 | 1 11 2 3 13 | elfzd |  |-  ( ph -> N e. ( M ... ( N + K ) ) ) | 
						
							| 15 |  | fzsplit |  |-  ( N e. ( M ... ( N + K ) ) -> ( M ... ( N + K ) ) = ( ( M ... N ) u. ( ( N + 1 ) ... ( N + K ) ) ) ) | 
						
							| 16 | 14 15 | syl |  |-  ( ph -> ( M ... ( N + K ) ) = ( ( M ... N ) u. ( ( N + 1 ) ... ( N + K ) ) ) ) | 
						
							| 17 |  | fzfid |  |-  ( ph -> ( M ... ( N + K ) ) e. Fin ) | 
						
							| 18 | 9 16 17 5 | fprodsplit |  |-  ( ph -> prod_ k e. ( M ... ( N + K ) ) A = ( prod_ k e. ( M ... N ) A x. prod_ k e. ( ( N + 1 ) ... ( N + K ) ) A ) ) |