Step |
Hyp |
Ref |
Expression |
1 |
|
prodsplit.1 |
|- ( ph -> M e. ZZ ) |
2 |
|
prodsplit.2 |
|- ( ph -> N e. ZZ ) |
3 |
|
prodsplit.3 |
|- ( ph -> M <_ N ) |
4 |
|
prodsplit.4 |
|- ( ph -> K e. NN0 ) |
5 |
|
prodsplit.5 |
|- ( ( ph /\ k e. ( M ... ( N + K ) ) ) -> A e. CC ) |
6 |
2
|
zred |
|- ( ph -> N e. RR ) |
7 |
6
|
ltp1d |
|- ( ph -> N < ( N + 1 ) ) |
8 |
|
fzdisj |
|- ( N < ( N + 1 ) -> ( ( M ... N ) i^i ( ( N + 1 ) ... ( N + K ) ) ) = (/) ) |
9 |
7 8
|
syl |
|- ( ph -> ( ( M ... N ) i^i ( ( N + 1 ) ... ( N + K ) ) ) = (/) ) |
10 |
4
|
nn0zd |
|- ( ph -> K e. ZZ ) |
11 |
2 10
|
zaddcld |
|- ( ph -> ( N + K ) e. ZZ ) |
12 |
|
nn0addge1 |
|- ( ( N e. RR /\ K e. NN0 ) -> N <_ ( N + K ) ) |
13 |
6 4 12
|
syl2anc |
|- ( ph -> N <_ ( N + K ) ) |
14 |
1 11 2 3 13
|
elfzd |
|- ( ph -> N e. ( M ... ( N + K ) ) ) |
15 |
|
fzsplit |
|- ( N e. ( M ... ( N + K ) ) -> ( M ... ( N + K ) ) = ( ( M ... N ) u. ( ( N + 1 ) ... ( N + K ) ) ) ) |
16 |
14 15
|
syl |
|- ( ph -> ( M ... ( N + K ) ) = ( ( M ... N ) u. ( ( N + 1 ) ... ( N + K ) ) ) ) |
17 |
|
fzfid |
|- ( ph -> ( M ... ( N + K ) ) e. Fin ) |
18 |
9 16 17 5
|
fprodsplit |
|- ( ph -> prod_ k e. ( M ... ( N + K ) ) A = ( prod_ k e. ( M ... N ) A x. prod_ k e. ( ( N + 1 ) ... ( N + K ) ) A ) ) |