| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2xp3dxp2ge1d.1 |  |-  ( ph -> X e. ( -u 1 [,) +oo ) ) | 
						
							| 2 |  | neg1rr |  |-  -u 1 e. RR | 
						
							| 3 |  | elicopnf |  |-  ( -u 1 e. RR -> ( X e. ( -u 1 [,) +oo ) <-> ( X e. RR /\ -u 1 <_ X ) ) ) | 
						
							| 4 | 2 3 | ax-mp |  |-  ( X e. ( -u 1 [,) +oo ) <-> ( X e. RR /\ -u 1 <_ X ) ) | 
						
							| 5 | 1 4 | sylib |  |-  ( ph -> ( X e. RR /\ -u 1 <_ X ) ) | 
						
							| 6 | 5 | simpld |  |-  ( ph -> X e. RR ) | 
						
							| 7 |  | 2re |  |-  2 e. RR | 
						
							| 8 |  | readdcl |  |-  ( ( X e. RR /\ 2 e. RR ) -> ( X + 2 ) e. RR ) | 
						
							| 9 | 7 8 | mpan2 |  |-  ( X e. RR -> ( X + 2 ) e. RR ) | 
						
							| 10 | 6 9 | syl |  |-  ( ph -> ( X + 2 ) e. RR ) | 
						
							| 11 |  | neg1cn |  |-  -u 1 e. CC | 
						
							| 12 |  | 2cn |  |-  2 e. CC | 
						
							| 13 |  | addcom |  |-  ( ( -u 1 e. CC /\ 2 e. CC ) -> ( -u 1 + 2 ) = ( 2 + -u 1 ) ) | 
						
							| 14 | 11 12 13 | mp2an |  |-  ( -u 1 + 2 ) = ( 2 + -u 1 ) | 
						
							| 15 |  | ax-1cn |  |-  1 e. CC | 
						
							| 16 |  | negsub |  |-  ( ( 2 e. CC /\ 1 e. CC ) -> ( 2 + -u 1 ) = ( 2 - 1 ) ) | 
						
							| 17 | 12 15 16 | mp2an |  |-  ( 2 + -u 1 ) = ( 2 - 1 ) | 
						
							| 18 |  | 2m1e1 |  |-  ( 2 - 1 ) = 1 | 
						
							| 19 | 14 17 18 | 3eqtri |  |-  ( -u 1 + 2 ) = 1 | 
						
							| 20 | 5 | simprd |  |-  ( ph -> -u 1 <_ X ) | 
						
							| 21 |  | leadd1 |  |-  ( ( -u 1 e. RR /\ X e. RR /\ 2 e. RR ) -> ( -u 1 <_ X <-> ( -u 1 + 2 ) <_ ( X + 2 ) ) ) | 
						
							| 22 | 2 7 21 | mp3an13 |  |-  ( X e. RR -> ( -u 1 <_ X <-> ( -u 1 + 2 ) <_ ( X + 2 ) ) ) | 
						
							| 23 | 6 22 | syl |  |-  ( ph -> ( -u 1 <_ X <-> ( -u 1 + 2 ) <_ ( X + 2 ) ) ) | 
						
							| 24 | 20 23 | mpbid |  |-  ( ph -> ( -u 1 + 2 ) <_ ( X + 2 ) ) | 
						
							| 25 | 19 24 | eqbrtrrid |  |-  ( ph -> 1 <_ ( X + 2 ) ) | 
						
							| 26 |  | 0lt1 |  |-  0 < 1 | 
						
							| 27 | 25 26 | jctil |  |-  ( ph -> ( 0 < 1 /\ 1 <_ ( X + 2 ) ) ) | 
						
							| 28 |  | 0re |  |-  0 e. RR | 
						
							| 29 |  | 1re |  |-  1 e. RR | 
						
							| 30 |  | ltletr |  |-  ( ( 0 e. RR /\ 1 e. RR /\ ( X + 2 ) e. RR ) -> ( ( 0 < 1 /\ 1 <_ ( X + 2 ) ) -> 0 < ( X + 2 ) ) ) | 
						
							| 31 | 28 29 30 | mp3an12 |  |-  ( ( X + 2 ) e. RR -> ( ( 0 < 1 /\ 1 <_ ( X + 2 ) ) -> 0 < ( X + 2 ) ) ) | 
						
							| 32 | 10 31 | syl |  |-  ( ph -> ( ( 0 < 1 /\ 1 <_ ( X + 2 ) ) -> 0 < ( X + 2 ) ) ) | 
						
							| 33 | 27 32 | mpd |  |-  ( ph -> 0 < ( X + 2 ) ) | 
						
							| 34 | 10 33 | jca |  |-  ( ph -> ( ( X + 2 ) e. RR /\ 0 < ( X + 2 ) ) ) | 
						
							| 35 |  | elrp |  |-  ( ( X + 2 ) e. RR+ <-> ( ( X + 2 ) e. RR /\ 0 < ( X + 2 ) ) ) | 
						
							| 36 | 35 | imbi2i |  |-  ( ( ph -> ( X + 2 ) e. RR+ ) <-> ( ph -> ( ( X + 2 ) e. RR /\ 0 < ( X + 2 ) ) ) ) | 
						
							| 37 | 34 36 | mpbir |  |-  ( ph -> ( X + 2 ) e. RR+ ) | 
						
							| 38 |  | remulcl |  |-  ( ( 2 e. RR /\ X e. RR ) -> ( 2 x. X ) e. RR ) | 
						
							| 39 | 7 38 | mpan |  |-  ( X e. RR -> ( 2 x. X ) e. RR ) | 
						
							| 40 | 6 39 | syl |  |-  ( ph -> ( 2 x. X ) e. RR ) | 
						
							| 41 |  | 3re |  |-  3 e. RR | 
						
							| 42 |  | readdcl |  |-  ( ( ( 2 x. X ) e. RR /\ 3 e. RR ) -> ( ( 2 x. X ) + 3 ) e. RR ) | 
						
							| 43 | 41 42 | mpan2 |  |-  ( ( 2 x. X ) e. RR -> ( ( 2 x. X ) + 3 ) e. RR ) | 
						
							| 44 | 40 43 | syl |  |-  ( ph -> ( ( 2 x. X ) + 3 ) e. RR ) | 
						
							| 45 | 7 | a1i |  |-  ( ph -> 2 e. RR ) | 
						
							| 46 |  | 1red |  |-  ( ph -> 1 e. RR ) | 
						
							| 47 | 40 46 | readdcld |  |-  ( ph -> ( ( 2 x. X ) + 1 ) e. RR ) | 
						
							| 48 |  | recn |  |-  ( X e. RR -> X e. CC ) | 
						
							| 49 |  | addrid |  |-  ( X e. CC -> ( X + 0 ) = X ) | 
						
							| 50 | 48 49 | syl |  |-  ( X e. RR -> ( X + 0 ) = X ) | 
						
							| 51 | 6 50 | syl |  |-  ( ph -> ( X + 0 ) = X ) | 
						
							| 52 | 11 15 | addcomi |  |-  ( -u 1 + 1 ) = ( 1 + -u 1 ) | 
						
							| 53 | 15 | negidi |  |-  ( 1 + -u 1 ) = 0 | 
						
							| 54 | 52 53 | eqtri |  |-  ( -u 1 + 1 ) = 0 | 
						
							| 55 |  | leadd1 |  |-  ( ( -u 1 e. RR /\ X e. RR /\ 1 e. RR ) -> ( -u 1 <_ X <-> ( -u 1 + 1 ) <_ ( X + 1 ) ) ) | 
						
							| 56 | 2 29 55 | mp3an13 |  |-  ( X e. RR -> ( -u 1 <_ X <-> ( -u 1 + 1 ) <_ ( X + 1 ) ) ) | 
						
							| 57 | 6 56 | syl |  |-  ( ph -> ( -u 1 <_ X <-> ( -u 1 + 1 ) <_ ( X + 1 ) ) ) | 
						
							| 58 | 20 57 | mpbid |  |-  ( ph -> ( -u 1 + 1 ) <_ ( X + 1 ) ) | 
						
							| 59 | 54 58 | eqbrtrrid |  |-  ( ph -> 0 <_ ( X + 1 ) ) | 
						
							| 60 |  | readdcl |  |-  ( ( X e. RR /\ 1 e. RR ) -> ( X + 1 ) e. RR ) | 
						
							| 61 | 29 60 | mpan2 |  |-  ( X e. RR -> ( X + 1 ) e. RR ) | 
						
							| 62 | 6 61 | syl |  |-  ( ph -> ( X + 1 ) e. RR ) | 
						
							| 63 | 62 6 | jca |  |-  ( ph -> ( ( X + 1 ) e. RR /\ X e. RR ) ) | 
						
							| 64 |  | leadd2 |  |-  ( ( 0 e. RR /\ ( X + 1 ) e. RR /\ X e. RR ) -> ( 0 <_ ( X + 1 ) <-> ( X + 0 ) <_ ( X + ( X + 1 ) ) ) ) | 
						
							| 65 | 28 64 | mp3an1 |  |-  ( ( ( X + 1 ) e. RR /\ X e. RR ) -> ( 0 <_ ( X + 1 ) <-> ( X + 0 ) <_ ( X + ( X + 1 ) ) ) ) | 
						
							| 66 | 63 65 | syl |  |-  ( ph -> ( 0 <_ ( X + 1 ) <-> ( X + 0 ) <_ ( X + ( X + 1 ) ) ) ) | 
						
							| 67 | 59 66 | mpbid |  |-  ( ph -> ( X + 0 ) <_ ( X + ( X + 1 ) ) ) | 
						
							| 68 | 6 48 | syl |  |-  ( ph -> X e. CC ) | 
						
							| 69 | 68 | 2timesd |  |-  ( ph -> ( 2 x. X ) = ( X + X ) ) | 
						
							| 70 | 69 | oveq1d |  |-  ( ph -> ( ( 2 x. X ) + 1 ) = ( ( X + X ) + 1 ) ) | 
						
							| 71 |  | addass |  |-  ( ( X e. CC /\ X e. CC /\ 1 e. CC ) -> ( ( X + X ) + 1 ) = ( X + ( X + 1 ) ) ) | 
						
							| 72 | 15 71 | mp3an3 |  |-  ( ( X e. CC /\ X e. CC ) -> ( ( X + X ) + 1 ) = ( X + ( X + 1 ) ) ) | 
						
							| 73 | 72 | anidms |  |-  ( X e. CC -> ( ( X + X ) + 1 ) = ( X + ( X + 1 ) ) ) | 
						
							| 74 | 68 73 | syl |  |-  ( ph -> ( ( X + X ) + 1 ) = ( X + ( X + 1 ) ) ) | 
						
							| 75 | 70 74 | eqtrd |  |-  ( ph -> ( ( 2 x. X ) + 1 ) = ( X + ( X + 1 ) ) ) | 
						
							| 76 | 67 75 | breqtrrd |  |-  ( ph -> ( X + 0 ) <_ ( ( 2 x. X ) + 1 ) ) | 
						
							| 77 | 51 76 | eqbrtrrd |  |-  ( ph -> X <_ ( ( 2 x. X ) + 1 ) ) | 
						
							| 78 | 45 | leidd |  |-  ( ph -> 2 <_ 2 ) | 
						
							| 79 | 6 45 47 45 77 78 | le2addd |  |-  ( ph -> ( X + 2 ) <_ ( ( ( 2 x. X ) + 1 ) + 2 ) ) | 
						
							| 80 | 40 | recnd |  |-  ( ph -> ( 2 x. X ) e. CC ) | 
						
							| 81 | 15 | a1i |  |-  ( ph -> 1 e. CC ) | 
						
							| 82 | 12 | a1i |  |-  ( ph -> 2 e. CC ) | 
						
							| 83 | 80 81 82 | addassd |  |-  ( ph -> ( ( ( 2 x. X ) + 1 ) + 2 ) = ( ( 2 x. X ) + ( 1 + 2 ) ) ) | 
						
							| 84 |  | 1p2e3 |  |-  ( 1 + 2 ) = 3 | 
						
							| 85 |  | oveq2 |  |-  ( ( 1 + 2 ) = 3 -> ( ( 2 x. X ) + ( 1 + 2 ) ) = ( ( 2 x. X ) + 3 ) ) | 
						
							| 86 | 84 85 | ax-mp |  |-  ( ( 2 x. X ) + ( 1 + 2 ) ) = ( ( 2 x. X ) + 3 ) | 
						
							| 87 | 83 86 | eqtrdi |  |-  ( ph -> ( ( ( 2 x. X ) + 1 ) + 2 ) = ( ( 2 x. X ) + 3 ) ) | 
						
							| 88 | 79 87 | breqtrd |  |-  ( ph -> ( X + 2 ) <_ ( ( 2 x. X ) + 3 ) ) | 
						
							| 89 | 37 44 88 | 3jca |  |-  ( ph -> ( ( X + 2 ) e. RR+ /\ ( ( 2 x. X ) + 3 ) e. RR /\ ( X + 2 ) <_ ( ( 2 x. X ) + 3 ) ) ) | 
						
							| 90 |  | divge1 |  |-  ( ( ( X + 2 ) e. RR+ /\ ( ( 2 x. X ) + 3 ) e. RR /\ ( X + 2 ) <_ ( ( 2 x. X ) + 3 ) ) -> 1 <_ ( ( ( 2 x. X ) + 3 ) / ( X + 2 ) ) ) | 
						
							| 91 | 89 90 | syl |  |-  ( ph -> 1 <_ ( ( ( 2 x. X ) + 3 ) / ( X + 2 ) ) ) |