Step |
Hyp |
Ref |
Expression |
1 |
|
2xp3dxp2ge1d.1 |
|- ( ph -> X e. ( -u 1 [,) +oo ) ) |
2 |
|
neg1rr |
|- -u 1 e. RR |
3 |
|
elicopnf |
|- ( -u 1 e. RR -> ( X e. ( -u 1 [,) +oo ) <-> ( X e. RR /\ -u 1 <_ X ) ) ) |
4 |
2 3
|
ax-mp |
|- ( X e. ( -u 1 [,) +oo ) <-> ( X e. RR /\ -u 1 <_ X ) ) |
5 |
1 4
|
sylib |
|- ( ph -> ( X e. RR /\ -u 1 <_ X ) ) |
6 |
5
|
simpld |
|- ( ph -> X e. RR ) |
7 |
|
2re |
|- 2 e. RR |
8 |
|
readdcl |
|- ( ( X e. RR /\ 2 e. RR ) -> ( X + 2 ) e. RR ) |
9 |
7 8
|
mpan2 |
|- ( X e. RR -> ( X + 2 ) e. RR ) |
10 |
6 9
|
syl |
|- ( ph -> ( X + 2 ) e. RR ) |
11 |
|
neg1cn |
|- -u 1 e. CC |
12 |
|
2cn |
|- 2 e. CC |
13 |
|
addcom |
|- ( ( -u 1 e. CC /\ 2 e. CC ) -> ( -u 1 + 2 ) = ( 2 + -u 1 ) ) |
14 |
11 12 13
|
mp2an |
|- ( -u 1 + 2 ) = ( 2 + -u 1 ) |
15 |
|
ax-1cn |
|- 1 e. CC |
16 |
|
negsub |
|- ( ( 2 e. CC /\ 1 e. CC ) -> ( 2 + -u 1 ) = ( 2 - 1 ) ) |
17 |
12 15 16
|
mp2an |
|- ( 2 + -u 1 ) = ( 2 - 1 ) |
18 |
|
2m1e1 |
|- ( 2 - 1 ) = 1 |
19 |
14 17 18
|
3eqtri |
|- ( -u 1 + 2 ) = 1 |
20 |
5
|
simprd |
|- ( ph -> -u 1 <_ X ) |
21 |
|
leadd1 |
|- ( ( -u 1 e. RR /\ X e. RR /\ 2 e. RR ) -> ( -u 1 <_ X <-> ( -u 1 + 2 ) <_ ( X + 2 ) ) ) |
22 |
2 7 21
|
mp3an13 |
|- ( X e. RR -> ( -u 1 <_ X <-> ( -u 1 + 2 ) <_ ( X + 2 ) ) ) |
23 |
6 22
|
syl |
|- ( ph -> ( -u 1 <_ X <-> ( -u 1 + 2 ) <_ ( X + 2 ) ) ) |
24 |
20 23
|
mpbid |
|- ( ph -> ( -u 1 + 2 ) <_ ( X + 2 ) ) |
25 |
19 24
|
eqbrtrrid |
|- ( ph -> 1 <_ ( X + 2 ) ) |
26 |
|
0lt1 |
|- 0 < 1 |
27 |
25 26
|
jctil |
|- ( ph -> ( 0 < 1 /\ 1 <_ ( X + 2 ) ) ) |
28 |
|
0re |
|- 0 e. RR |
29 |
|
1re |
|- 1 e. RR |
30 |
|
ltletr |
|- ( ( 0 e. RR /\ 1 e. RR /\ ( X + 2 ) e. RR ) -> ( ( 0 < 1 /\ 1 <_ ( X + 2 ) ) -> 0 < ( X + 2 ) ) ) |
31 |
28 29 30
|
mp3an12 |
|- ( ( X + 2 ) e. RR -> ( ( 0 < 1 /\ 1 <_ ( X + 2 ) ) -> 0 < ( X + 2 ) ) ) |
32 |
10 31
|
syl |
|- ( ph -> ( ( 0 < 1 /\ 1 <_ ( X + 2 ) ) -> 0 < ( X + 2 ) ) ) |
33 |
27 32
|
mpd |
|- ( ph -> 0 < ( X + 2 ) ) |
34 |
10 33
|
jca |
|- ( ph -> ( ( X + 2 ) e. RR /\ 0 < ( X + 2 ) ) ) |
35 |
|
elrp |
|- ( ( X + 2 ) e. RR+ <-> ( ( X + 2 ) e. RR /\ 0 < ( X + 2 ) ) ) |
36 |
35
|
imbi2i |
|- ( ( ph -> ( X + 2 ) e. RR+ ) <-> ( ph -> ( ( X + 2 ) e. RR /\ 0 < ( X + 2 ) ) ) ) |
37 |
34 36
|
mpbir |
|- ( ph -> ( X + 2 ) e. RR+ ) |
38 |
|
remulcl |
|- ( ( 2 e. RR /\ X e. RR ) -> ( 2 x. X ) e. RR ) |
39 |
7 38
|
mpan |
|- ( X e. RR -> ( 2 x. X ) e. RR ) |
40 |
6 39
|
syl |
|- ( ph -> ( 2 x. X ) e. RR ) |
41 |
|
3re |
|- 3 e. RR |
42 |
|
readdcl |
|- ( ( ( 2 x. X ) e. RR /\ 3 e. RR ) -> ( ( 2 x. X ) + 3 ) e. RR ) |
43 |
41 42
|
mpan2 |
|- ( ( 2 x. X ) e. RR -> ( ( 2 x. X ) + 3 ) e. RR ) |
44 |
40 43
|
syl |
|- ( ph -> ( ( 2 x. X ) + 3 ) e. RR ) |
45 |
7
|
a1i |
|- ( ph -> 2 e. RR ) |
46 |
|
1red |
|- ( ph -> 1 e. RR ) |
47 |
40 46
|
readdcld |
|- ( ph -> ( ( 2 x. X ) + 1 ) e. RR ) |
48 |
|
recn |
|- ( X e. RR -> X e. CC ) |
49 |
|
addid1 |
|- ( X e. CC -> ( X + 0 ) = X ) |
50 |
48 49
|
syl |
|- ( X e. RR -> ( X + 0 ) = X ) |
51 |
6 50
|
syl |
|- ( ph -> ( X + 0 ) = X ) |
52 |
11 15
|
addcomi |
|- ( -u 1 + 1 ) = ( 1 + -u 1 ) |
53 |
15
|
negidi |
|- ( 1 + -u 1 ) = 0 |
54 |
52 53
|
eqtri |
|- ( -u 1 + 1 ) = 0 |
55 |
|
leadd1 |
|- ( ( -u 1 e. RR /\ X e. RR /\ 1 e. RR ) -> ( -u 1 <_ X <-> ( -u 1 + 1 ) <_ ( X + 1 ) ) ) |
56 |
2 29 55
|
mp3an13 |
|- ( X e. RR -> ( -u 1 <_ X <-> ( -u 1 + 1 ) <_ ( X + 1 ) ) ) |
57 |
6 56
|
syl |
|- ( ph -> ( -u 1 <_ X <-> ( -u 1 + 1 ) <_ ( X + 1 ) ) ) |
58 |
20 57
|
mpbid |
|- ( ph -> ( -u 1 + 1 ) <_ ( X + 1 ) ) |
59 |
54 58
|
eqbrtrrid |
|- ( ph -> 0 <_ ( X + 1 ) ) |
60 |
|
readdcl |
|- ( ( X e. RR /\ 1 e. RR ) -> ( X + 1 ) e. RR ) |
61 |
29 60
|
mpan2 |
|- ( X e. RR -> ( X + 1 ) e. RR ) |
62 |
6 61
|
syl |
|- ( ph -> ( X + 1 ) e. RR ) |
63 |
62 6
|
jca |
|- ( ph -> ( ( X + 1 ) e. RR /\ X e. RR ) ) |
64 |
|
leadd2 |
|- ( ( 0 e. RR /\ ( X + 1 ) e. RR /\ X e. RR ) -> ( 0 <_ ( X + 1 ) <-> ( X + 0 ) <_ ( X + ( X + 1 ) ) ) ) |
65 |
28 64
|
mp3an1 |
|- ( ( ( X + 1 ) e. RR /\ X e. RR ) -> ( 0 <_ ( X + 1 ) <-> ( X + 0 ) <_ ( X + ( X + 1 ) ) ) ) |
66 |
63 65
|
syl |
|- ( ph -> ( 0 <_ ( X + 1 ) <-> ( X + 0 ) <_ ( X + ( X + 1 ) ) ) ) |
67 |
59 66
|
mpbid |
|- ( ph -> ( X + 0 ) <_ ( X + ( X + 1 ) ) ) |
68 |
6 48
|
syl |
|- ( ph -> X e. CC ) |
69 |
68
|
2timesd |
|- ( ph -> ( 2 x. X ) = ( X + X ) ) |
70 |
69
|
oveq1d |
|- ( ph -> ( ( 2 x. X ) + 1 ) = ( ( X + X ) + 1 ) ) |
71 |
|
addass |
|- ( ( X e. CC /\ X e. CC /\ 1 e. CC ) -> ( ( X + X ) + 1 ) = ( X + ( X + 1 ) ) ) |
72 |
15 71
|
mp3an3 |
|- ( ( X e. CC /\ X e. CC ) -> ( ( X + X ) + 1 ) = ( X + ( X + 1 ) ) ) |
73 |
72
|
anidms |
|- ( X e. CC -> ( ( X + X ) + 1 ) = ( X + ( X + 1 ) ) ) |
74 |
68 73
|
syl |
|- ( ph -> ( ( X + X ) + 1 ) = ( X + ( X + 1 ) ) ) |
75 |
70 74
|
eqtrd |
|- ( ph -> ( ( 2 x. X ) + 1 ) = ( X + ( X + 1 ) ) ) |
76 |
67 75
|
breqtrrd |
|- ( ph -> ( X + 0 ) <_ ( ( 2 x. X ) + 1 ) ) |
77 |
51 76
|
eqbrtrrd |
|- ( ph -> X <_ ( ( 2 x. X ) + 1 ) ) |
78 |
45
|
leidd |
|- ( ph -> 2 <_ 2 ) |
79 |
6 45 47 45 77 78
|
le2addd |
|- ( ph -> ( X + 2 ) <_ ( ( ( 2 x. X ) + 1 ) + 2 ) ) |
80 |
40
|
recnd |
|- ( ph -> ( 2 x. X ) e. CC ) |
81 |
15
|
a1i |
|- ( ph -> 1 e. CC ) |
82 |
12
|
a1i |
|- ( ph -> 2 e. CC ) |
83 |
80 81 82
|
addassd |
|- ( ph -> ( ( ( 2 x. X ) + 1 ) + 2 ) = ( ( 2 x. X ) + ( 1 + 2 ) ) ) |
84 |
|
1p2e3 |
|- ( 1 + 2 ) = 3 |
85 |
|
oveq2 |
|- ( ( 1 + 2 ) = 3 -> ( ( 2 x. X ) + ( 1 + 2 ) ) = ( ( 2 x. X ) + 3 ) ) |
86 |
84 85
|
ax-mp |
|- ( ( 2 x. X ) + ( 1 + 2 ) ) = ( ( 2 x. X ) + 3 ) |
87 |
83 86
|
eqtrdi |
|- ( ph -> ( ( ( 2 x. X ) + 1 ) + 2 ) = ( ( 2 x. X ) + 3 ) ) |
88 |
79 87
|
breqtrd |
|- ( ph -> ( X + 2 ) <_ ( ( 2 x. X ) + 3 ) ) |
89 |
37 44 88
|
3jca |
|- ( ph -> ( ( X + 2 ) e. RR+ /\ ( ( 2 x. X ) + 3 ) e. RR /\ ( X + 2 ) <_ ( ( 2 x. X ) + 3 ) ) ) |
90 |
|
divge1 |
|- ( ( ( X + 2 ) e. RR+ /\ ( ( 2 x. X ) + 3 ) e. RR /\ ( X + 2 ) <_ ( ( 2 x. X ) + 3 ) ) -> 1 <_ ( ( ( 2 x. X ) + 3 ) / ( X + 2 ) ) ) |
91 |
89 90
|
syl |
|- ( ph -> 1 <_ ( ( ( 2 x. X ) + 3 ) / ( X + 2 ) ) ) |