Step |
Hyp |
Ref |
Expression |
1 |
|
2xp3dxp2ge1d.1 |
⊢ ( 𝜑 → 𝑋 ∈ ( - 1 [,) +∞ ) ) |
2 |
|
neg1rr |
⊢ - 1 ∈ ℝ |
3 |
|
elicopnf |
⊢ ( - 1 ∈ ℝ → ( 𝑋 ∈ ( - 1 [,) +∞ ) ↔ ( 𝑋 ∈ ℝ ∧ - 1 ≤ 𝑋 ) ) ) |
4 |
2 3
|
ax-mp |
⊢ ( 𝑋 ∈ ( - 1 [,) +∞ ) ↔ ( 𝑋 ∈ ℝ ∧ - 1 ≤ 𝑋 ) ) |
5 |
1 4
|
sylib |
⊢ ( 𝜑 → ( 𝑋 ∈ ℝ ∧ - 1 ≤ 𝑋 ) ) |
6 |
5
|
simpld |
⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
7 |
|
2re |
⊢ 2 ∈ ℝ |
8 |
|
readdcl |
⊢ ( ( 𝑋 ∈ ℝ ∧ 2 ∈ ℝ ) → ( 𝑋 + 2 ) ∈ ℝ ) |
9 |
7 8
|
mpan2 |
⊢ ( 𝑋 ∈ ℝ → ( 𝑋 + 2 ) ∈ ℝ ) |
10 |
6 9
|
syl |
⊢ ( 𝜑 → ( 𝑋 + 2 ) ∈ ℝ ) |
11 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
12 |
|
2cn |
⊢ 2 ∈ ℂ |
13 |
|
addcom |
⊢ ( ( - 1 ∈ ℂ ∧ 2 ∈ ℂ ) → ( - 1 + 2 ) = ( 2 + - 1 ) ) |
14 |
11 12 13
|
mp2an |
⊢ ( - 1 + 2 ) = ( 2 + - 1 ) |
15 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
16 |
|
negsub |
⊢ ( ( 2 ∈ ℂ ∧ 1 ∈ ℂ ) → ( 2 + - 1 ) = ( 2 − 1 ) ) |
17 |
12 15 16
|
mp2an |
⊢ ( 2 + - 1 ) = ( 2 − 1 ) |
18 |
|
2m1e1 |
⊢ ( 2 − 1 ) = 1 |
19 |
14 17 18
|
3eqtri |
⊢ ( - 1 + 2 ) = 1 |
20 |
5
|
simprd |
⊢ ( 𝜑 → - 1 ≤ 𝑋 ) |
21 |
|
leadd1 |
⊢ ( ( - 1 ∈ ℝ ∧ 𝑋 ∈ ℝ ∧ 2 ∈ ℝ ) → ( - 1 ≤ 𝑋 ↔ ( - 1 + 2 ) ≤ ( 𝑋 + 2 ) ) ) |
22 |
2 7 21
|
mp3an13 |
⊢ ( 𝑋 ∈ ℝ → ( - 1 ≤ 𝑋 ↔ ( - 1 + 2 ) ≤ ( 𝑋 + 2 ) ) ) |
23 |
6 22
|
syl |
⊢ ( 𝜑 → ( - 1 ≤ 𝑋 ↔ ( - 1 + 2 ) ≤ ( 𝑋 + 2 ) ) ) |
24 |
20 23
|
mpbid |
⊢ ( 𝜑 → ( - 1 + 2 ) ≤ ( 𝑋 + 2 ) ) |
25 |
19 24
|
eqbrtrrid |
⊢ ( 𝜑 → 1 ≤ ( 𝑋 + 2 ) ) |
26 |
|
0lt1 |
⊢ 0 < 1 |
27 |
25 26
|
jctil |
⊢ ( 𝜑 → ( 0 < 1 ∧ 1 ≤ ( 𝑋 + 2 ) ) ) |
28 |
|
0re |
⊢ 0 ∈ ℝ |
29 |
|
1re |
⊢ 1 ∈ ℝ |
30 |
|
ltletr |
⊢ ( ( 0 ∈ ℝ ∧ 1 ∈ ℝ ∧ ( 𝑋 + 2 ) ∈ ℝ ) → ( ( 0 < 1 ∧ 1 ≤ ( 𝑋 + 2 ) ) → 0 < ( 𝑋 + 2 ) ) ) |
31 |
28 29 30
|
mp3an12 |
⊢ ( ( 𝑋 + 2 ) ∈ ℝ → ( ( 0 < 1 ∧ 1 ≤ ( 𝑋 + 2 ) ) → 0 < ( 𝑋 + 2 ) ) ) |
32 |
10 31
|
syl |
⊢ ( 𝜑 → ( ( 0 < 1 ∧ 1 ≤ ( 𝑋 + 2 ) ) → 0 < ( 𝑋 + 2 ) ) ) |
33 |
27 32
|
mpd |
⊢ ( 𝜑 → 0 < ( 𝑋 + 2 ) ) |
34 |
10 33
|
jca |
⊢ ( 𝜑 → ( ( 𝑋 + 2 ) ∈ ℝ ∧ 0 < ( 𝑋 + 2 ) ) ) |
35 |
|
elrp |
⊢ ( ( 𝑋 + 2 ) ∈ ℝ+ ↔ ( ( 𝑋 + 2 ) ∈ ℝ ∧ 0 < ( 𝑋 + 2 ) ) ) |
36 |
35
|
imbi2i |
⊢ ( ( 𝜑 → ( 𝑋 + 2 ) ∈ ℝ+ ) ↔ ( 𝜑 → ( ( 𝑋 + 2 ) ∈ ℝ ∧ 0 < ( 𝑋 + 2 ) ) ) ) |
37 |
34 36
|
mpbir |
⊢ ( 𝜑 → ( 𝑋 + 2 ) ∈ ℝ+ ) |
38 |
|
remulcl |
⊢ ( ( 2 ∈ ℝ ∧ 𝑋 ∈ ℝ ) → ( 2 · 𝑋 ) ∈ ℝ ) |
39 |
7 38
|
mpan |
⊢ ( 𝑋 ∈ ℝ → ( 2 · 𝑋 ) ∈ ℝ ) |
40 |
6 39
|
syl |
⊢ ( 𝜑 → ( 2 · 𝑋 ) ∈ ℝ ) |
41 |
|
3re |
⊢ 3 ∈ ℝ |
42 |
|
readdcl |
⊢ ( ( ( 2 · 𝑋 ) ∈ ℝ ∧ 3 ∈ ℝ ) → ( ( 2 · 𝑋 ) + 3 ) ∈ ℝ ) |
43 |
41 42
|
mpan2 |
⊢ ( ( 2 · 𝑋 ) ∈ ℝ → ( ( 2 · 𝑋 ) + 3 ) ∈ ℝ ) |
44 |
40 43
|
syl |
⊢ ( 𝜑 → ( ( 2 · 𝑋 ) + 3 ) ∈ ℝ ) |
45 |
7
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℝ ) |
46 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
47 |
40 46
|
readdcld |
⊢ ( 𝜑 → ( ( 2 · 𝑋 ) + 1 ) ∈ ℝ ) |
48 |
|
recn |
⊢ ( 𝑋 ∈ ℝ → 𝑋 ∈ ℂ ) |
49 |
|
addid1 |
⊢ ( 𝑋 ∈ ℂ → ( 𝑋 + 0 ) = 𝑋 ) |
50 |
48 49
|
syl |
⊢ ( 𝑋 ∈ ℝ → ( 𝑋 + 0 ) = 𝑋 ) |
51 |
6 50
|
syl |
⊢ ( 𝜑 → ( 𝑋 + 0 ) = 𝑋 ) |
52 |
11 15
|
addcomi |
⊢ ( - 1 + 1 ) = ( 1 + - 1 ) |
53 |
15
|
negidi |
⊢ ( 1 + - 1 ) = 0 |
54 |
52 53
|
eqtri |
⊢ ( - 1 + 1 ) = 0 |
55 |
|
leadd1 |
⊢ ( ( - 1 ∈ ℝ ∧ 𝑋 ∈ ℝ ∧ 1 ∈ ℝ ) → ( - 1 ≤ 𝑋 ↔ ( - 1 + 1 ) ≤ ( 𝑋 + 1 ) ) ) |
56 |
2 29 55
|
mp3an13 |
⊢ ( 𝑋 ∈ ℝ → ( - 1 ≤ 𝑋 ↔ ( - 1 + 1 ) ≤ ( 𝑋 + 1 ) ) ) |
57 |
6 56
|
syl |
⊢ ( 𝜑 → ( - 1 ≤ 𝑋 ↔ ( - 1 + 1 ) ≤ ( 𝑋 + 1 ) ) ) |
58 |
20 57
|
mpbid |
⊢ ( 𝜑 → ( - 1 + 1 ) ≤ ( 𝑋 + 1 ) ) |
59 |
54 58
|
eqbrtrrid |
⊢ ( 𝜑 → 0 ≤ ( 𝑋 + 1 ) ) |
60 |
|
readdcl |
⊢ ( ( 𝑋 ∈ ℝ ∧ 1 ∈ ℝ ) → ( 𝑋 + 1 ) ∈ ℝ ) |
61 |
29 60
|
mpan2 |
⊢ ( 𝑋 ∈ ℝ → ( 𝑋 + 1 ) ∈ ℝ ) |
62 |
6 61
|
syl |
⊢ ( 𝜑 → ( 𝑋 + 1 ) ∈ ℝ ) |
63 |
62 6
|
jca |
⊢ ( 𝜑 → ( ( 𝑋 + 1 ) ∈ ℝ ∧ 𝑋 ∈ ℝ ) ) |
64 |
|
leadd2 |
⊢ ( ( 0 ∈ ℝ ∧ ( 𝑋 + 1 ) ∈ ℝ ∧ 𝑋 ∈ ℝ ) → ( 0 ≤ ( 𝑋 + 1 ) ↔ ( 𝑋 + 0 ) ≤ ( 𝑋 + ( 𝑋 + 1 ) ) ) ) |
65 |
28 64
|
mp3an1 |
⊢ ( ( ( 𝑋 + 1 ) ∈ ℝ ∧ 𝑋 ∈ ℝ ) → ( 0 ≤ ( 𝑋 + 1 ) ↔ ( 𝑋 + 0 ) ≤ ( 𝑋 + ( 𝑋 + 1 ) ) ) ) |
66 |
63 65
|
syl |
⊢ ( 𝜑 → ( 0 ≤ ( 𝑋 + 1 ) ↔ ( 𝑋 + 0 ) ≤ ( 𝑋 + ( 𝑋 + 1 ) ) ) ) |
67 |
59 66
|
mpbid |
⊢ ( 𝜑 → ( 𝑋 + 0 ) ≤ ( 𝑋 + ( 𝑋 + 1 ) ) ) |
68 |
6 48
|
syl |
⊢ ( 𝜑 → 𝑋 ∈ ℂ ) |
69 |
68
|
2timesd |
⊢ ( 𝜑 → ( 2 · 𝑋 ) = ( 𝑋 + 𝑋 ) ) |
70 |
69
|
oveq1d |
⊢ ( 𝜑 → ( ( 2 · 𝑋 ) + 1 ) = ( ( 𝑋 + 𝑋 ) + 1 ) ) |
71 |
|
addass |
⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑋 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑋 + 𝑋 ) + 1 ) = ( 𝑋 + ( 𝑋 + 1 ) ) ) |
72 |
15 71
|
mp3an3 |
⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑋 ∈ ℂ ) → ( ( 𝑋 + 𝑋 ) + 1 ) = ( 𝑋 + ( 𝑋 + 1 ) ) ) |
73 |
72
|
anidms |
⊢ ( 𝑋 ∈ ℂ → ( ( 𝑋 + 𝑋 ) + 1 ) = ( 𝑋 + ( 𝑋 + 1 ) ) ) |
74 |
68 73
|
syl |
⊢ ( 𝜑 → ( ( 𝑋 + 𝑋 ) + 1 ) = ( 𝑋 + ( 𝑋 + 1 ) ) ) |
75 |
70 74
|
eqtrd |
⊢ ( 𝜑 → ( ( 2 · 𝑋 ) + 1 ) = ( 𝑋 + ( 𝑋 + 1 ) ) ) |
76 |
67 75
|
breqtrrd |
⊢ ( 𝜑 → ( 𝑋 + 0 ) ≤ ( ( 2 · 𝑋 ) + 1 ) ) |
77 |
51 76
|
eqbrtrrd |
⊢ ( 𝜑 → 𝑋 ≤ ( ( 2 · 𝑋 ) + 1 ) ) |
78 |
45
|
leidd |
⊢ ( 𝜑 → 2 ≤ 2 ) |
79 |
6 45 47 45 77 78
|
le2addd |
⊢ ( 𝜑 → ( 𝑋 + 2 ) ≤ ( ( ( 2 · 𝑋 ) + 1 ) + 2 ) ) |
80 |
40
|
recnd |
⊢ ( 𝜑 → ( 2 · 𝑋 ) ∈ ℂ ) |
81 |
15
|
a1i |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
82 |
12
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℂ ) |
83 |
80 81 82
|
addassd |
⊢ ( 𝜑 → ( ( ( 2 · 𝑋 ) + 1 ) + 2 ) = ( ( 2 · 𝑋 ) + ( 1 + 2 ) ) ) |
84 |
|
1p2e3 |
⊢ ( 1 + 2 ) = 3 |
85 |
|
oveq2 |
⊢ ( ( 1 + 2 ) = 3 → ( ( 2 · 𝑋 ) + ( 1 + 2 ) ) = ( ( 2 · 𝑋 ) + 3 ) ) |
86 |
84 85
|
ax-mp |
⊢ ( ( 2 · 𝑋 ) + ( 1 + 2 ) ) = ( ( 2 · 𝑋 ) + 3 ) |
87 |
83 86
|
eqtrdi |
⊢ ( 𝜑 → ( ( ( 2 · 𝑋 ) + 1 ) + 2 ) = ( ( 2 · 𝑋 ) + 3 ) ) |
88 |
79 87
|
breqtrd |
⊢ ( 𝜑 → ( 𝑋 + 2 ) ≤ ( ( 2 · 𝑋 ) + 3 ) ) |
89 |
37 44 88
|
3jca |
⊢ ( 𝜑 → ( ( 𝑋 + 2 ) ∈ ℝ+ ∧ ( ( 2 · 𝑋 ) + 3 ) ∈ ℝ ∧ ( 𝑋 + 2 ) ≤ ( ( 2 · 𝑋 ) + 3 ) ) ) |
90 |
|
divge1 |
⊢ ( ( ( 𝑋 + 2 ) ∈ ℝ+ ∧ ( ( 2 · 𝑋 ) + 3 ) ∈ ℝ ∧ ( 𝑋 + 2 ) ≤ ( ( 2 · 𝑋 ) + 3 ) ) → 1 ≤ ( ( ( 2 · 𝑋 ) + 3 ) / ( 𝑋 + 2 ) ) ) |
91 |
89 90
|
syl |
⊢ ( 𝜑 → 1 ≤ ( ( ( 2 · 𝑋 ) + 3 ) / ( 𝑋 + 2 ) ) ) |