| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2xp3dxp2ge1d.1 | ⊢ ( 𝜑  →  𝑋  ∈  ( - 1 [,) +∞ ) ) | 
						
							| 2 |  | neg1rr | ⊢ - 1  ∈  ℝ | 
						
							| 3 |  | elicopnf | ⊢ ( - 1  ∈  ℝ  →  ( 𝑋  ∈  ( - 1 [,) +∞ )  ↔  ( 𝑋  ∈  ℝ  ∧  - 1  ≤  𝑋 ) ) ) | 
						
							| 4 | 2 3 | ax-mp | ⊢ ( 𝑋  ∈  ( - 1 [,) +∞ )  ↔  ( 𝑋  ∈  ℝ  ∧  - 1  ≤  𝑋 ) ) | 
						
							| 5 | 1 4 | sylib | ⊢ ( 𝜑  →  ( 𝑋  ∈  ℝ  ∧  - 1  ≤  𝑋 ) ) | 
						
							| 6 | 5 | simpld | ⊢ ( 𝜑  →  𝑋  ∈  ℝ ) | 
						
							| 7 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 8 |  | readdcl | ⊢ ( ( 𝑋  ∈  ℝ  ∧  2  ∈  ℝ )  →  ( 𝑋  +  2 )  ∈  ℝ ) | 
						
							| 9 | 7 8 | mpan2 | ⊢ ( 𝑋  ∈  ℝ  →  ( 𝑋  +  2 )  ∈  ℝ ) | 
						
							| 10 | 6 9 | syl | ⊢ ( 𝜑  →  ( 𝑋  +  2 )  ∈  ℝ ) | 
						
							| 11 |  | neg1cn | ⊢ - 1  ∈  ℂ | 
						
							| 12 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 13 |  | addcom | ⊢ ( ( - 1  ∈  ℂ  ∧  2  ∈  ℂ )  →  ( - 1  +  2 )  =  ( 2  +  - 1 ) ) | 
						
							| 14 | 11 12 13 | mp2an | ⊢ ( - 1  +  2 )  =  ( 2  +  - 1 ) | 
						
							| 15 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 16 |  | negsub | ⊢ ( ( 2  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( 2  +  - 1 )  =  ( 2  −  1 ) ) | 
						
							| 17 | 12 15 16 | mp2an | ⊢ ( 2  +  - 1 )  =  ( 2  −  1 ) | 
						
							| 18 |  | 2m1e1 | ⊢ ( 2  −  1 )  =  1 | 
						
							| 19 | 14 17 18 | 3eqtri | ⊢ ( - 1  +  2 )  =  1 | 
						
							| 20 | 5 | simprd | ⊢ ( 𝜑  →  - 1  ≤  𝑋 ) | 
						
							| 21 |  | leadd1 | ⊢ ( ( - 1  ∈  ℝ  ∧  𝑋  ∈  ℝ  ∧  2  ∈  ℝ )  →  ( - 1  ≤  𝑋  ↔  ( - 1  +  2 )  ≤  ( 𝑋  +  2 ) ) ) | 
						
							| 22 | 2 7 21 | mp3an13 | ⊢ ( 𝑋  ∈  ℝ  →  ( - 1  ≤  𝑋  ↔  ( - 1  +  2 )  ≤  ( 𝑋  +  2 ) ) ) | 
						
							| 23 | 6 22 | syl | ⊢ ( 𝜑  →  ( - 1  ≤  𝑋  ↔  ( - 1  +  2 )  ≤  ( 𝑋  +  2 ) ) ) | 
						
							| 24 | 20 23 | mpbid | ⊢ ( 𝜑  →  ( - 1  +  2 )  ≤  ( 𝑋  +  2 ) ) | 
						
							| 25 | 19 24 | eqbrtrrid | ⊢ ( 𝜑  →  1  ≤  ( 𝑋  +  2 ) ) | 
						
							| 26 |  | 0lt1 | ⊢ 0  <  1 | 
						
							| 27 | 25 26 | jctil | ⊢ ( 𝜑  →  ( 0  <  1  ∧  1  ≤  ( 𝑋  +  2 ) ) ) | 
						
							| 28 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 29 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 30 |  | ltletr | ⊢ ( ( 0  ∈  ℝ  ∧  1  ∈  ℝ  ∧  ( 𝑋  +  2 )  ∈  ℝ )  →  ( ( 0  <  1  ∧  1  ≤  ( 𝑋  +  2 ) )  →  0  <  ( 𝑋  +  2 ) ) ) | 
						
							| 31 | 28 29 30 | mp3an12 | ⊢ ( ( 𝑋  +  2 )  ∈  ℝ  →  ( ( 0  <  1  ∧  1  ≤  ( 𝑋  +  2 ) )  →  0  <  ( 𝑋  +  2 ) ) ) | 
						
							| 32 | 10 31 | syl | ⊢ ( 𝜑  →  ( ( 0  <  1  ∧  1  ≤  ( 𝑋  +  2 ) )  →  0  <  ( 𝑋  +  2 ) ) ) | 
						
							| 33 | 27 32 | mpd | ⊢ ( 𝜑  →  0  <  ( 𝑋  +  2 ) ) | 
						
							| 34 | 10 33 | jca | ⊢ ( 𝜑  →  ( ( 𝑋  +  2 )  ∈  ℝ  ∧  0  <  ( 𝑋  +  2 ) ) ) | 
						
							| 35 |  | elrp | ⊢ ( ( 𝑋  +  2 )  ∈  ℝ+  ↔  ( ( 𝑋  +  2 )  ∈  ℝ  ∧  0  <  ( 𝑋  +  2 ) ) ) | 
						
							| 36 | 35 | imbi2i | ⊢ ( ( 𝜑  →  ( 𝑋  +  2 )  ∈  ℝ+ )  ↔  ( 𝜑  →  ( ( 𝑋  +  2 )  ∈  ℝ  ∧  0  <  ( 𝑋  +  2 ) ) ) ) | 
						
							| 37 | 34 36 | mpbir | ⊢ ( 𝜑  →  ( 𝑋  +  2 )  ∈  ℝ+ ) | 
						
							| 38 |  | remulcl | ⊢ ( ( 2  ∈  ℝ  ∧  𝑋  ∈  ℝ )  →  ( 2  ·  𝑋 )  ∈  ℝ ) | 
						
							| 39 | 7 38 | mpan | ⊢ ( 𝑋  ∈  ℝ  →  ( 2  ·  𝑋 )  ∈  ℝ ) | 
						
							| 40 | 6 39 | syl | ⊢ ( 𝜑  →  ( 2  ·  𝑋 )  ∈  ℝ ) | 
						
							| 41 |  | 3re | ⊢ 3  ∈  ℝ | 
						
							| 42 |  | readdcl | ⊢ ( ( ( 2  ·  𝑋 )  ∈  ℝ  ∧  3  ∈  ℝ )  →  ( ( 2  ·  𝑋 )  +  3 )  ∈  ℝ ) | 
						
							| 43 | 41 42 | mpan2 | ⊢ ( ( 2  ·  𝑋 )  ∈  ℝ  →  ( ( 2  ·  𝑋 )  +  3 )  ∈  ℝ ) | 
						
							| 44 | 40 43 | syl | ⊢ ( 𝜑  →  ( ( 2  ·  𝑋 )  +  3 )  ∈  ℝ ) | 
						
							| 45 | 7 | a1i | ⊢ ( 𝜑  →  2  ∈  ℝ ) | 
						
							| 46 |  | 1red | ⊢ ( 𝜑  →  1  ∈  ℝ ) | 
						
							| 47 | 40 46 | readdcld | ⊢ ( 𝜑  →  ( ( 2  ·  𝑋 )  +  1 )  ∈  ℝ ) | 
						
							| 48 |  | recn | ⊢ ( 𝑋  ∈  ℝ  →  𝑋  ∈  ℂ ) | 
						
							| 49 |  | addrid | ⊢ ( 𝑋  ∈  ℂ  →  ( 𝑋  +  0 )  =  𝑋 ) | 
						
							| 50 | 48 49 | syl | ⊢ ( 𝑋  ∈  ℝ  →  ( 𝑋  +  0 )  =  𝑋 ) | 
						
							| 51 | 6 50 | syl | ⊢ ( 𝜑  →  ( 𝑋  +  0 )  =  𝑋 ) | 
						
							| 52 | 11 15 | addcomi | ⊢ ( - 1  +  1 )  =  ( 1  +  - 1 ) | 
						
							| 53 | 15 | negidi | ⊢ ( 1  +  - 1 )  =  0 | 
						
							| 54 | 52 53 | eqtri | ⊢ ( - 1  +  1 )  =  0 | 
						
							| 55 |  | leadd1 | ⊢ ( ( - 1  ∈  ℝ  ∧  𝑋  ∈  ℝ  ∧  1  ∈  ℝ )  →  ( - 1  ≤  𝑋  ↔  ( - 1  +  1 )  ≤  ( 𝑋  +  1 ) ) ) | 
						
							| 56 | 2 29 55 | mp3an13 | ⊢ ( 𝑋  ∈  ℝ  →  ( - 1  ≤  𝑋  ↔  ( - 1  +  1 )  ≤  ( 𝑋  +  1 ) ) ) | 
						
							| 57 | 6 56 | syl | ⊢ ( 𝜑  →  ( - 1  ≤  𝑋  ↔  ( - 1  +  1 )  ≤  ( 𝑋  +  1 ) ) ) | 
						
							| 58 | 20 57 | mpbid | ⊢ ( 𝜑  →  ( - 1  +  1 )  ≤  ( 𝑋  +  1 ) ) | 
						
							| 59 | 54 58 | eqbrtrrid | ⊢ ( 𝜑  →  0  ≤  ( 𝑋  +  1 ) ) | 
						
							| 60 |  | readdcl | ⊢ ( ( 𝑋  ∈  ℝ  ∧  1  ∈  ℝ )  →  ( 𝑋  +  1 )  ∈  ℝ ) | 
						
							| 61 | 29 60 | mpan2 | ⊢ ( 𝑋  ∈  ℝ  →  ( 𝑋  +  1 )  ∈  ℝ ) | 
						
							| 62 | 6 61 | syl | ⊢ ( 𝜑  →  ( 𝑋  +  1 )  ∈  ℝ ) | 
						
							| 63 | 62 6 | jca | ⊢ ( 𝜑  →  ( ( 𝑋  +  1 )  ∈  ℝ  ∧  𝑋  ∈  ℝ ) ) | 
						
							| 64 |  | leadd2 | ⊢ ( ( 0  ∈  ℝ  ∧  ( 𝑋  +  1 )  ∈  ℝ  ∧  𝑋  ∈  ℝ )  →  ( 0  ≤  ( 𝑋  +  1 )  ↔  ( 𝑋  +  0 )  ≤  ( 𝑋  +  ( 𝑋  +  1 ) ) ) ) | 
						
							| 65 | 28 64 | mp3an1 | ⊢ ( ( ( 𝑋  +  1 )  ∈  ℝ  ∧  𝑋  ∈  ℝ )  →  ( 0  ≤  ( 𝑋  +  1 )  ↔  ( 𝑋  +  0 )  ≤  ( 𝑋  +  ( 𝑋  +  1 ) ) ) ) | 
						
							| 66 | 63 65 | syl | ⊢ ( 𝜑  →  ( 0  ≤  ( 𝑋  +  1 )  ↔  ( 𝑋  +  0 )  ≤  ( 𝑋  +  ( 𝑋  +  1 ) ) ) ) | 
						
							| 67 | 59 66 | mpbid | ⊢ ( 𝜑  →  ( 𝑋  +  0 )  ≤  ( 𝑋  +  ( 𝑋  +  1 ) ) ) | 
						
							| 68 | 6 48 | syl | ⊢ ( 𝜑  →  𝑋  ∈  ℂ ) | 
						
							| 69 | 68 | 2timesd | ⊢ ( 𝜑  →  ( 2  ·  𝑋 )  =  ( 𝑋  +  𝑋 ) ) | 
						
							| 70 | 69 | oveq1d | ⊢ ( 𝜑  →  ( ( 2  ·  𝑋 )  +  1 )  =  ( ( 𝑋  +  𝑋 )  +  1 ) ) | 
						
							| 71 |  | addass | ⊢ ( ( 𝑋  ∈  ℂ  ∧  𝑋  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( ( 𝑋  +  𝑋 )  +  1 )  =  ( 𝑋  +  ( 𝑋  +  1 ) ) ) | 
						
							| 72 | 15 71 | mp3an3 | ⊢ ( ( 𝑋  ∈  ℂ  ∧  𝑋  ∈  ℂ )  →  ( ( 𝑋  +  𝑋 )  +  1 )  =  ( 𝑋  +  ( 𝑋  +  1 ) ) ) | 
						
							| 73 | 72 | anidms | ⊢ ( 𝑋  ∈  ℂ  →  ( ( 𝑋  +  𝑋 )  +  1 )  =  ( 𝑋  +  ( 𝑋  +  1 ) ) ) | 
						
							| 74 | 68 73 | syl | ⊢ ( 𝜑  →  ( ( 𝑋  +  𝑋 )  +  1 )  =  ( 𝑋  +  ( 𝑋  +  1 ) ) ) | 
						
							| 75 | 70 74 | eqtrd | ⊢ ( 𝜑  →  ( ( 2  ·  𝑋 )  +  1 )  =  ( 𝑋  +  ( 𝑋  +  1 ) ) ) | 
						
							| 76 | 67 75 | breqtrrd | ⊢ ( 𝜑  →  ( 𝑋  +  0 )  ≤  ( ( 2  ·  𝑋 )  +  1 ) ) | 
						
							| 77 | 51 76 | eqbrtrrd | ⊢ ( 𝜑  →  𝑋  ≤  ( ( 2  ·  𝑋 )  +  1 ) ) | 
						
							| 78 | 45 | leidd | ⊢ ( 𝜑  →  2  ≤  2 ) | 
						
							| 79 | 6 45 47 45 77 78 | le2addd | ⊢ ( 𝜑  →  ( 𝑋  +  2 )  ≤  ( ( ( 2  ·  𝑋 )  +  1 )  +  2 ) ) | 
						
							| 80 | 40 | recnd | ⊢ ( 𝜑  →  ( 2  ·  𝑋 )  ∈  ℂ ) | 
						
							| 81 | 15 | a1i | ⊢ ( 𝜑  →  1  ∈  ℂ ) | 
						
							| 82 | 12 | a1i | ⊢ ( 𝜑  →  2  ∈  ℂ ) | 
						
							| 83 | 80 81 82 | addassd | ⊢ ( 𝜑  →  ( ( ( 2  ·  𝑋 )  +  1 )  +  2 )  =  ( ( 2  ·  𝑋 )  +  ( 1  +  2 ) ) ) | 
						
							| 84 |  | 1p2e3 | ⊢ ( 1  +  2 )  =  3 | 
						
							| 85 |  | oveq2 | ⊢ ( ( 1  +  2 )  =  3  →  ( ( 2  ·  𝑋 )  +  ( 1  +  2 ) )  =  ( ( 2  ·  𝑋 )  +  3 ) ) | 
						
							| 86 | 84 85 | ax-mp | ⊢ ( ( 2  ·  𝑋 )  +  ( 1  +  2 ) )  =  ( ( 2  ·  𝑋 )  +  3 ) | 
						
							| 87 | 83 86 | eqtrdi | ⊢ ( 𝜑  →  ( ( ( 2  ·  𝑋 )  +  1 )  +  2 )  =  ( ( 2  ·  𝑋 )  +  3 ) ) | 
						
							| 88 | 79 87 | breqtrd | ⊢ ( 𝜑  →  ( 𝑋  +  2 )  ≤  ( ( 2  ·  𝑋 )  +  3 ) ) | 
						
							| 89 | 37 44 88 | 3jca | ⊢ ( 𝜑  →  ( ( 𝑋  +  2 )  ∈  ℝ+  ∧  ( ( 2  ·  𝑋 )  +  3 )  ∈  ℝ  ∧  ( 𝑋  +  2 )  ≤  ( ( 2  ·  𝑋 )  +  3 ) ) ) | 
						
							| 90 |  | divge1 | ⊢ ( ( ( 𝑋  +  2 )  ∈  ℝ+  ∧  ( ( 2  ·  𝑋 )  +  3 )  ∈  ℝ  ∧  ( 𝑋  +  2 )  ≤  ( ( 2  ·  𝑋 )  +  3 ) )  →  1  ≤  ( ( ( 2  ·  𝑋 )  +  3 )  /  ( 𝑋  +  2 ) ) ) | 
						
							| 91 | 89 90 | syl | ⊢ ( 𝜑  →  1  ≤  ( ( ( 2  ·  𝑋 )  +  3 )  /  ( 𝑋  +  2 ) ) ) |