| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq2 | ⊢ ( 𝑥  =  0  →  ( 𝑋  +  𝑥 )  =  ( 𝑋  +  0 ) ) | 
						
							| 2 | 1 | fveq2d | ⊢ ( 𝑥  =  0  →  ( ! ‘ ( 𝑋  +  𝑥 ) )  =  ( ! ‘ ( 𝑋  +  0 ) ) ) | 
						
							| 3 |  | oveq2 | ⊢ ( 𝑥  =  0  →  ( 𝑌  +  𝑥 )  =  ( 𝑌  +  0 ) ) | 
						
							| 4 | 3 | fveq2d | ⊢ ( 𝑥  =  0  →  ( ! ‘ ( 𝑌  +  𝑥 ) )  =  ( ! ‘ ( 𝑌  +  0 ) ) ) | 
						
							| 5 | 2 4 | breq12d | ⊢ ( 𝑥  =  0  →  ( ( ! ‘ ( 𝑋  +  𝑥 ) )  ≤  ( ! ‘ ( 𝑌  +  𝑥 ) )  ↔  ( ! ‘ ( 𝑋  +  0 ) )  ≤  ( ! ‘ ( 𝑌  +  0 ) ) ) ) | 
						
							| 6 |  | oveq2 | ⊢ ( 𝑥  =  𝑦  →  ( 𝑋  +  𝑥 )  =  ( 𝑋  +  𝑦 ) ) | 
						
							| 7 | 6 | fveq2d | ⊢ ( 𝑥  =  𝑦  →  ( ! ‘ ( 𝑋  +  𝑥 ) )  =  ( ! ‘ ( 𝑋  +  𝑦 ) ) ) | 
						
							| 8 |  | oveq2 | ⊢ ( 𝑥  =  𝑦  →  ( 𝑌  +  𝑥 )  =  ( 𝑌  +  𝑦 ) ) | 
						
							| 9 | 8 | fveq2d | ⊢ ( 𝑥  =  𝑦  →  ( ! ‘ ( 𝑌  +  𝑥 ) )  =  ( ! ‘ ( 𝑌  +  𝑦 ) ) ) | 
						
							| 10 | 7 9 | breq12d | ⊢ ( 𝑥  =  𝑦  →  ( ( ! ‘ ( 𝑋  +  𝑥 ) )  ≤  ( ! ‘ ( 𝑌  +  𝑥 ) )  ↔  ( ! ‘ ( 𝑋  +  𝑦 ) )  ≤  ( ! ‘ ( 𝑌  +  𝑦 ) ) ) ) | 
						
							| 11 |  | oveq2 | ⊢ ( 𝑥  =  ( 𝑦  +  1 )  →  ( 𝑋  +  𝑥 )  =  ( 𝑋  +  ( 𝑦  +  1 ) ) ) | 
						
							| 12 | 11 | fveq2d | ⊢ ( 𝑥  =  ( 𝑦  +  1 )  →  ( ! ‘ ( 𝑋  +  𝑥 ) )  =  ( ! ‘ ( 𝑋  +  ( 𝑦  +  1 ) ) ) ) | 
						
							| 13 |  | oveq2 | ⊢ ( 𝑥  =  ( 𝑦  +  1 )  →  ( 𝑌  +  𝑥 )  =  ( 𝑌  +  ( 𝑦  +  1 ) ) ) | 
						
							| 14 | 13 | fveq2d | ⊢ ( 𝑥  =  ( 𝑦  +  1 )  →  ( ! ‘ ( 𝑌  +  𝑥 ) )  =  ( ! ‘ ( 𝑌  +  ( 𝑦  +  1 ) ) ) ) | 
						
							| 15 | 12 14 | breq12d | ⊢ ( 𝑥  =  ( 𝑦  +  1 )  →  ( ( ! ‘ ( 𝑋  +  𝑥 ) )  ≤  ( ! ‘ ( 𝑌  +  𝑥 ) )  ↔  ( ! ‘ ( 𝑋  +  ( 𝑦  +  1 ) ) )  ≤  ( ! ‘ ( 𝑌  +  ( 𝑦  +  1 ) ) ) ) ) | 
						
							| 16 |  | oveq2 | ⊢ ( 𝑥  =  𝑁  →  ( 𝑋  +  𝑥 )  =  ( 𝑋  +  𝑁 ) ) | 
						
							| 17 | 16 | fveq2d | ⊢ ( 𝑥  =  𝑁  →  ( ! ‘ ( 𝑋  +  𝑥 ) )  =  ( ! ‘ ( 𝑋  +  𝑁 ) ) ) | 
						
							| 18 |  | oveq2 | ⊢ ( 𝑥  =  𝑁  →  ( 𝑌  +  𝑥 )  =  ( 𝑌  +  𝑁 ) ) | 
						
							| 19 | 18 | fveq2d | ⊢ ( 𝑥  =  𝑁  →  ( ! ‘ ( 𝑌  +  𝑥 ) )  =  ( ! ‘ ( 𝑌  +  𝑁 ) ) ) | 
						
							| 20 | 17 19 | breq12d | ⊢ ( 𝑥  =  𝑁  →  ( ( ! ‘ ( 𝑋  +  𝑥 ) )  ≤  ( ! ‘ ( 𝑌  +  𝑥 ) )  ↔  ( ! ‘ ( 𝑋  +  𝑁 ) )  ≤  ( ! ‘ ( 𝑌  +  𝑁 ) ) ) ) | 
						
							| 21 |  | facwordi | ⊢ ( ( 𝑋  ∈  ℕ0  ∧  𝑌  ∈  ℕ0  ∧  𝑋  ≤  𝑌 )  →  ( ! ‘ 𝑋 )  ≤  ( ! ‘ 𝑌 ) ) | 
						
							| 22 |  | nn0cn | ⊢ ( 𝑋  ∈  ℕ0  →  𝑋  ∈  ℂ ) | 
						
							| 23 |  | addrid | ⊢ ( 𝑋  ∈  ℂ  →  ( 𝑋  +  0 )  =  𝑋 ) | 
						
							| 24 | 22 23 | syl | ⊢ ( 𝑋  ∈  ℕ0  →  ( 𝑋  +  0 )  =  𝑋 ) | 
						
							| 25 | 24 | fveq2d | ⊢ ( 𝑋  ∈  ℕ0  →  ( ! ‘ ( 𝑋  +  0 ) )  =  ( ! ‘ 𝑋 ) ) | 
						
							| 26 | 25 | 3ad2ant1 | ⊢ ( ( 𝑋  ∈  ℕ0  ∧  𝑌  ∈  ℕ0  ∧  𝑋  ≤  𝑌 )  →  ( ! ‘ ( 𝑋  +  0 ) )  =  ( ! ‘ 𝑋 ) ) | 
						
							| 27 |  | nn0cn | ⊢ ( 𝑌  ∈  ℕ0  →  𝑌  ∈  ℂ ) | 
						
							| 28 |  | addrid | ⊢ ( 𝑌  ∈  ℂ  →  ( 𝑌  +  0 )  =  𝑌 ) | 
						
							| 29 | 27 28 | syl | ⊢ ( 𝑌  ∈  ℕ0  →  ( 𝑌  +  0 )  =  𝑌 ) | 
						
							| 30 | 29 | fveq2d | ⊢ ( 𝑌  ∈  ℕ0  →  ( ! ‘ ( 𝑌  +  0 ) )  =  ( ! ‘ 𝑌 ) ) | 
						
							| 31 | 30 | 3ad2ant2 | ⊢ ( ( 𝑋  ∈  ℕ0  ∧  𝑌  ∈  ℕ0  ∧  𝑋  ≤  𝑌 )  →  ( ! ‘ ( 𝑌  +  0 ) )  =  ( ! ‘ 𝑌 ) ) | 
						
							| 32 | 21 26 31 | 3brtr4d | ⊢ ( ( 𝑋  ∈  ℕ0  ∧  𝑌  ∈  ℕ0  ∧  𝑋  ≤  𝑌 )  →  ( ! ‘ ( 𝑋  +  0 ) )  ≤  ( ! ‘ ( 𝑌  +  0 ) ) ) | 
						
							| 33 |  | nn0cn | ⊢ ( 𝑦  ∈  ℕ0  →  𝑦  ∈  ℂ ) | 
						
							| 34 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 35 |  | addass | ⊢ ( ( 𝑋  ∈  ℂ  ∧  𝑦  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( ( 𝑋  +  𝑦 )  +  1 )  =  ( 𝑋  +  ( 𝑦  +  1 ) ) ) | 
						
							| 36 | 34 35 | mp3an3 | ⊢ ( ( 𝑋  ∈  ℂ  ∧  𝑦  ∈  ℂ )  →  ( ( 𝑋  +  𝑦 )  +  1 )  =  ( 𝑋  +  ( 𝑦  +  1 ) ) ) | 
						
							| 37 | 22 33 36 | syl2an | ⊢ ( ( 𝑋  ∈  ℕ0  ∧  𝑦  ∈  ℕ0 )  →  ( ( 𝑋  +  𝑦 )  +  1 )  =  ( 𝑋  +  ( 𝑦  +  1 ) ) ) | 
						
							| 38 | 37 | fveq2d | ⊢ ( ( 𝑋  ∈  ℕ0  ∧  𝑦  ∈  ℕ0 )  →  ( ! ‘ ( ( 𝑋  +  𝑦 )  +  1 ) )  =  ( ! ‘ ( 𝑋  +  ( 𝑦  +  1 ) ) ) ) | 
						
							| 39 | 38 | 3ad2antl1 | ⊢ ( ( ( 𝑋  ∈  ℕ0  ∧  𝑌  ∈  ℕ0  ∧  𝑋  ≤  𝑌 )  ∧  𝑦  ∈  ℕ0 )  →  ( ! ‘ ( ( 𝑋  +  𝑦 )  +  1 ) )  =  ( ! ‘ ( 𝑋  +  ( 𝑦  +  1 ) ) ) ) | 
						
							| 40 | 39 | adantr | ⊢ ( ( ( ( 𝑋  ∈  ℕ0  ∧  𝑌  ∈  ℕ0  ∧  𝑋  ≤  𝑌 )  ∧  𝑦  ∈  ℕ0 )  ∧  ( ! ‘ ( 𝑋  +  𝑦 ) )  ≤  ( ! ‘ ( 𝑌  +  𝑦 ) ) )  →  ( ! ‘ ( ( 𝑋  +  𝑦 )  +  1 ) )  =  ( ! ‘ ( 𝑋  +  ( 𝑦  +  1 ) ) ) ) | 
						
							| 41 |  | nn0addcl | ⊢ ( ( 𝑋  ∈  ℕ0  ∧  𝑦  ∈  ℕ0 )  →  ( 𝑋  +  𝑦 )  ∈  ℕ0 ) | 
						
							| 42 | 41 | 3adant2 | ⊢ ( ( 𝑋  ∈  ℕ0  ∧  𝑌  ∈  ℕ0  ∧  𝑦  ∈  ℕ0 )  →  ( 𝑋  +  𝑦 )  ∈  ℕ0 ) | 
						
							| 43 | 42 | adantr | ⊢ ( ( ( 𝑋  ∈  ℕ0  ∧  𝑌  ∈  ℕ0  ∧  𝑦  ∈  ℕ0 )  ∧  𝑋  ≤  𝑌 )  →  ( 𝑋  +  𝑦 )  ∈  ℕ0 ) | 
						
							| 44 |  | nn0addcl | ⊢ ( ( 𝑌  ∈  ℕ0  ∧  𝑦  ∈  ℕ0 )  →  ( 𝑌  +  𝑦 )  ∈  ℕ0 ) | 
						
							| 45 | 44 | 3adant1 | ⊢ ( ( 𝑋  ∈  ℕ0  ∧  𝑌  ∈  ℕ0  ∧  𝑦  ∈  ℕ0 )  →  ( 𝑌  +  𝑦 )  ∈  ℕ0 ) | 
						
							| 46 | 45 | adantr | ⊢ ( ( ( 𝑋  ∈  ℕ0  ∧  𝑌  ∈  ℕ0  ∧  𝑦  ∈  ℕ0 )  ∧  𝑋  ≤  𝑌 )  →  ( 𝑌  +  𝑦 )  ∈  ℕ0 ) | 
						
							| 47 |  | nn0re | ⊢ ( 𝑋  ∈  ℕ0  →  𝑋  ∈  ℝ ) | 
						
							| 48 |  | nn0re | ⊢ ( 𝑌  ∈  ℕ0  →  𝑌  ∈  ℝ ) | 
						
							| 49 |  | nn0re | ⊢ ( 𝑦  ∈  ℕ0  →  𝑦  ∈  ℝ ) | 
						
							| 50 |  | leadd1 | ⊢ ( ( 𝑋  ∈  ℝ  ∧  𝑌  ∈  ℝ  ∧  𝑦  ∈  ℝ )  →  ( 𝑋  ≤  𝑌  ↔  ( 𝑋  +  𝑦 )  ≤  ( 𝑌  +  𝑦 ) ) ) | 
						
							| 51 | 47 48 49 50 | syl3an | ⊢ ( ( 𝑋  ∈  ℕ0  ∧  𝑌  ∈  ℕ0  ∧  𝑦  ∈  ℕ0 )  →  ( 𝑋  ≤  𝑌  ↔  ( 𝑋  +  𝑦 )  ≤  ( 𝑌  +  𝑦 ) ) ) | 
						
							| 52 | 51 | biimpa | ⊢ ( ( ( 𝑋  ∈  ℕ0  ∧  𝑌  ∈  ℕ0  ∧  𝑦  ∈  ℕ0 )  ∧  𝑋  ≤  𝑌 )  →  ( 𝑋  +  𝑦 )  ≤  ( 𝑌  +  𝑦 ) ) | 
						
							| 53 |  | facwordi | ⊢ ( ( ( 𝑋  +  𝑦 )  ∈  ℕ0  ∧  ( 𝑌  +  𝑦 )  ∈  ℕ0  ∧  ( 𝑋  +  𝑦 )  ≤  ( 𝑌  +  𝑦 ) )  →  ( ! ‘ ( 𝑋  +  𝑦 ) )  ≤  ( ! ‘ ( 𝑌  +  𝑦 ) ) ) | 
						
							| 54 | 43 46 52 53 | syl3anc | ⊢ ( ( ( 𝑋  ∈  ℕ0  ∧  𝑌  ∈  ℕ0  ∧  𝑦  ∈  ℕ0 )  ∧  𝑋  ≤  𝑌 )  →  ( ! ‘ ( 𝑋  +  𝑦 ) )  ≤  ( ! ‘ ( 𝑌  +  𝑦 ) ) ) | 
						
							| 55 | 54 | 3an1rs | ⊢ ( ( ( 𝑋  ∈  ℕ0  ∧  𝑌  ∈  ℕ0  ∧  𝑋  ≤  𝑌 )  ∧  𝑦  ∈  ℕ0 )  →  ( ! ‘ ( 𝑋  +  𝑦 ) )  ≤  ( ! ‘ ( 𝑌  +  𝑦 ) ) ) | 
						
							| 56 |  | nn0re | ⊢ ( ( 𝑋  +  𝑦 )  ∈  ℕ0  →  ( 𝑋  +  𝑦 )  ∈  ℝ ) | 
						
							| 57 | 43 56 | syl | ⊢ ( ( ( 𝑋  ∈  ℕ0  ∧  𝑌  ∈  ℕ0  ∧  𝑦  ∈  ℕ0 )  ∧  𝑋  ≤  𝑌 )  →  ( 𝑋  +  𝑦 )  ∈  ℝ ) | 
						
							| 58 |  | nn0re | ⊢ ( ( 𝑌  +  𝑦 )  ∈  ℕ0  →  ( 𝑌  +  𝑦 )  ∈  ℝ ) | 
						
							| 59 | 46 58 | syl | ⊢ ( ( ( 𝑋  ∈  ℕ0  ∧  𝑌  ∈  ℕ0  ∧  𝑦  ∈  ℕ0 )  ∧  𝑋  ≤  𝑌 )  →  ( 𝑌  +  𝑦 )  ∈  ℝ ) | 
						
							| 60 | 57 59 | jca | ⊢ ( ( ( 𝑋  ∈  ℕ0  ∧  𝑌  ∈  ℕ0  ∧  𝑦  ∈  ℕ0 )  ∧  𝑋  ≤  𝑌 )  →  ( ( 𝑋  +  𝑦 )  ∈  ℝ  ∧  ( 𝑌  +  𝑦 )  ∈  ℝ ) ) | 
						
							| 61 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 62 |  | leadd1 | ⊢ ( ( ( 𝑋  +  𝑦 )  ∈  ℝ  ∧  ( 𝑌  +  𝑦 )  ∈  ℝ  ∧  1  ∈  ℝ )  →  ( ( 𝑋  +  𝑦 )  ≤  ( 𝑌  +  𝑦 )  ↔  ( ( 𝑋  +  𝑦 )  +  1 )  ≤  ( ( 𝑌  +  𝑦 )  +  1 ) ) ) | 
						
							| 63 | 61 62 | mp3an3 | ⊢ ( ( ( 𝑋  +  𝑦 )  ∈  ℝ  ∧  ( 𝑌  +  𝑦 )  ∈  ℝ )  →  ( ( 𝑋  +  𝑦 )  ≤  ( 𝑌  +  𝑦 )  ↔  ( ( 𝑋  +  𝑦 )  +  1 )  ≤  ( ( 𝑌  +  𝑦 )  +  1 ) ) ) | 
						
							| 64 | 60 63 | syl | ⊢ ( ( ( 𝑋  ∈  ℕ0  ∧  𝑌  ∈  ℕ0  ∧  𝑦  ∈  ℕ0 )  ∧  𝑋  ≤  𝑌 )  →  ( ( 𝑋  +  𝑦 )  ≤  ( 𝑌  +  𝑦 )  ↔  ( ( 𝑋  +  𝑦 )  +  1 )  ≤  ( ( 𝑌  +  𝑦 )  +  1 ) ) ) | 
						
							| 65 | 52 64 | mpbid | ⊢ ( ( ( 𝑋  ∈  ℕ0  ∧  𝑌  ∈  ℕ0  ∧  𝑦  ∈  ℕ0 )  ∧  𝑋  ≤  𝑌 )  →  ( ( 𝑋  +  𝑦 )  +  1 )  ≤  ( ( 𝑌  +  𝑦 )  +  1 ) ) | 
						
							| 66 | 65 | 3an1rs | ⊢ ( ( ( 𝑋  ∈  ℕ0  ∧  𝑌  ∈  ℕ0  ∧  𝑋  ≤  𝑌 )  ∧  𝑦  ∈  ℕ0 )  →  ( ( 𝑋  +  𝑦 )  +  1 )  ≤  ( ( 𝑌  +  𝑦 )  +  1 ) ) | 
						
							| 67 | 55 66 | jca | ⊢ ( ( ( 𝑋  ∈  ℕ0  ∧  𝑌  ∈  ℕ0  ∧  𝑋  ≤  𝑌 )  ∧  𝑦  ∈  ℕ0 )  →  ( ( ! ‘ ( 𝑋  +  𝑦 ) )  ≤  ( ! ‘ ( 𝑌  +  𝑦 ) )  ∧  ( ( 𝑋  +  𝑦 )  +  1 )  ≤  ( ( 𝑌  +  𝑦 )  +  1 ) ) ) | 
						
							| 68 |  | faccl | ⊢ ( ( 𝑋  +  𝑦 )  ∈  ℕ0  →  ( ! ‘ ( 𝑋  +  𝑦 ) )  ∈  ℕ ) | 
						
							| 69 |  | nnre | ⊢ ( ( ! ‘ ( 𝑋  +  𝑦 ) )  ∈  ℕ  →  ( ! ‘ ( 𝑋  +  𝑦 ) )  ∈  ℝ ) | 
						
							| 70 | 41 68 69 | 3syl | ⊢ ( ( 𝑋  ∈  ℕ0  ∧  𝑦  ∈  ℕ0 )  →  ( ! ‘ ( 𝑋  +  𝑦 ) )  ∈  ℝ ) | 
						
							| 71 | 70 | 3adant2 | ⊢ ( ( 𝑋  ∈  ℕ0  ∧  𝑌  ∈  ℕ0  ∧  𝑦  ∈  ℕ0 )  →  ( ! ‘ ( 𝑋  +  𝑦 ) )  ∈  ℝ ) | 
						
							| 72 |  | nngt0 | ⊢ ( ( ! ‘ ( 𝑋  +  𝑦 ) )  ∈  ℕ  →  0  <  ( ! ‘ ( 𝑋  +  𝑦 ) ) ) | 
						
							| 73 | 41 68 72 | 3syl | ⊢ ( ( 𝑋  ∈  ℕ0  ∧  𝑦  ∈  ℕ0 )  →  0  <  ( ! ‘ ( 𝑋  +  𝑦 ) ) ) | 
						
							| 74 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 75 |  | ltle | ⊢ ( ( 0  ∈  ℝ  ∧  ( ! ‘ ( 𝑋  +  𝑦 ) )  ∈  ℝ )  →  ( 0  <  ( ! ‘ ( 𝑋  +  𝑦 ) )  →  0  ≤  ( ! ‘ ( 𝑋  +  𝑦 ) ) ) ) | 
						
							| 76 | 74 75 | mpan | ⊢ ( ( ! ‘ ( 𝑋  +  𝑦 ) )  ∈  ℝ  →  ( 0  <  ( ! ‘ ( 𝑋  +  𝑦 ) )  →  0  ≤  ( ! ‘ ( 𝑋  +  𝑦 ) ) ) ) | 
						
							| 77 | 70 76 | syl | ⊢ ( ( 𝑋  ∈  ℕ0  ∧  𝑦  ∈  ℕ0 )  →  ( 0  <  ( ! ‘ ( 𝑋  +  𝑦 ) )  →  0  ≤  ( ! ‘ ( 𝑋  +  𝑦 ) ) ) ) | 
						
							| 78 | 73 77 | mpd | ⊢ ( ( 𝑋  ∈  ℕ0  ∧  𝑦  ∈  ℕ0 )  →  0  ≤  ( ! ‘ ( 𝑋  +  𝑦 ) ) ) | 
						
							| 79 | 78 | 3adant2 | ⊢ ( ( 𝑋  ∈  ℕ0  ∧  𝑌  ∈  ℕ0  ∧  𝑦  ∈  ℕ0 )  →  0  ≤  ( ! ‘ ( 𝑋  +  𝑦 ) ) ) | 
						
							| 80 | 71 79 | jca | ⊢ ( ( 𝑋  ∈  ℕ0  ∧  𝑌  ∈  ℕ0  ∧  𝑦  ∈  ℕ0 )  →  ( ( ! ‘ ( 𝑋  +  𝑦 ) )  ∈  ℝ  ∧  0  ≤  ( ! ‘ ( 𝑋  +  𝑦 ) ) ) ) | 
						
							| 81 |  | faccl | ⊢ ( ( 𝑌  +  𝑦 )  ∈  ℕ0  →  ( ! ‘ ( 𝑌  +  𝑦 ) )  ∈  ℕ ) | 
						
							| 82 |  | nnre | ⊢ ( ( ! ‘ ( 𝑌  +  𝑦 ) )  ∈  ℕ  →  ( ! ‘ ( 𝑌  +  𝑦 ) )  ∈  ℝ ) | 
						
							| 83 | 44 81 82 | 3syl | ⊢ ( ( 𝑌  ∈  ℕ0  ∧  𝑦  ∈  ℕ0 )  →  ( ! ‘ ( 𝑌  +  𝑦 ) )  ∈  ℝ ) | 
						
							| 84 | 83 | 3adant1 | ⊢ ( ( 𝑋  ∈  ℕ0  ∧  𝑌  ∈  ℕ0  ∧  𝑦  ∈  ℕ0 )  →  ( ! ‘ ( 𝑌  +  𝑦 ) )  ∈  ℝ ) | 
						
							| 85 | 80 84 | jca | ⊢ ( ( 𝑋  ∈  ℕ0  ∧  𝑌  ∈  ℕ0  ∧  𝑦  ∈  ℕ0 )  →  ( ( ( ! ‘ ( 𝑋  +  𝑦 ) )  ∈  ℝ  ∧  0  ≤  ( ! ‘ ( 𝑋  +  𝑦 ) ) )  ∧  ( ! ‘ ( 𝑌  +  𝑦 ) )  ∈  ℝ ) ) | 
						
							| 86 |  | 1nn0 | ⊢ 1  ∈  ℕ0 | 
						
							| 87 |  | nn0addcl | ⊢ ( ( ( 𝑋  +  𝑦 )  ∈  ℕ0  ∧  1  ∈  ℕ0 )  →  ( ( 𝑋  +  𝑦 )  +  1 )  ∈  ℕ0 ) | 
						
							| 88 | 86 87 | mpan2 | ⊢ ( ( 𝑋  +  𝑦 )  ∈  ℕ0  →  ( ( 𝑋  +  𝑦 )  +  1 )  ∈  ℕ0 ) | 
						
							| 89 | 41 88 | syl | ⊢ ( ( 𝑋  ∈  ℕ0  ∧  𝑦  ∈  ℕ0 )  →  ( ( 𝑋  +  𝑦 )  +  1 )  ∈  ℕ0 ) | 
						
							| 90 |  | nn0re | ⊢ ( ( ( 𝑋  +  𝑦 )  +  1 )  ∈  ℕ0  →  ( ( 𝑋  +  𝑦 )  +  1 )  ∈  ℝ ) | 
						
							| 91 | 89 90 | syl | ⊢ ( ( 𝑋  ∈  ℕ0  ∧  𝑦  ∈  ℕ0 )  →  ( ( 𝑋  +  𝑦 )  +  1 )  ∈  ℝ ) | 
						
							| 92 | 91 | 3adant2 | ⊢ ( ( 𝑋  ∈  ℕ0  ∧  𝑌  ∈  ℕ0  ∧  𝑦  ∈  ℕ0 )  →  ( ( 𝑋  +  𝑦 )  +  1 )  ∈  ℝ ) | 
						
							| 93 |  | nn0ge0 | ⊢ ( ( ( 𝑋  +  𝑦 )  +  1 )  ∈  ℕ0  →  0  ≤  ( ( 𝑋  +  𝑦 )  +  1 ) ) | 
						
							| 94 | 89 93 | syl | ⊢ ( ( 𝑋  ∈  ℕ0  ∧  𝑦  ∈  ℕ0 )  →  0  ≤  ( ( 𝑋  +  𝑦 )  +  1 ) ) | 
						
							| 95 | 94 | 3adant2 | ⊢ ( ( 𝑋  ∈  ℕ0  ∧  𝑌  ∈  ℕ0  ∧  𝑦  ∈  ℕ0 )  →  0  ≤  ( ( 𝑋  +  𝑦 )  +  1 ) ) | 
						
							| 96 | 92 95 | jca | ⊢ ( ( 𝑋  ∈  ℕ0  ∧  𝑌  ∈  ℕ0  ∧  𝑦  ∈  ℕ0 )  →  ( ( ( 𝑋  +  𝑦 )  +  1 )  ∈  ℝ  ∧  0  ≤  ( ( 𝑋  +  𝑦 )  +  1 ) ) ) | 
						
							| 97 |  | nn0readdcl | ⊢ ( ( 𝑌  ∈  ℕ0  ∧  𝑦  ∈  ℕ0 )  →  ( 𝑌  +  𝑦 )  ∈  ℝ ) | 
						
							| 98 |  | 1red | ⊢ ( ( 𝑌  ∈  ℕ0  ∧  𝑦  ∈  ℕ0 )  →  1  ∈  ℝ ) | 
						
							| 99 | 97 98 | readdcld | ⊢ ( ( 𝑌  ∈  ℕ0  ∧  𝑦  ∈  ℕ0 )  →  ( ( 𝑌  +  𝑦 )  +  1 )  ∈  ℝ ) | 
						
							| 100 | 99 | 3adant1 | ⊢ ( ( 𝑋  ∈  ℕ0  ∧  𝑌  ∈  ℕ0  ∧  𝑦  ∈  ℕ0 )  →  ( ( 𝑌  +  𝑦 )  +  1 )  ∈  ℝ ) | 
						
							| 101 | 96 100 | jca | ⊢ ( ( 𝑋  ∈  ℕ0  ∧  𝑌  ∈  ℕ0  ∧  𝑦  ∈  ℕ0 )  →  ( ( ( ( 𝑋  +  𝑦 )  +  1 )  ∈  ℝ  ∧  0  ≤  ( ( 𝑋  +  𝑦 )  +  1 ) )  ∧  ( ( 𝑌  +  𝑦 )  +  1 )  ∈  ℝ ) ) | 
						
							| 102 | 85 101 | jca | ⊢ ( ( 𝑋  ∈  ℕ0  ∧  𝑌  ∈  ℕ0  ∧  𝑦  ∈  ℕ0 )  →  ( ( ( ( ! ‘ ( 𝑋  +  𝑦 ) )  ∈  ℝ  ∧  0  ≤  ( ! ‘ ( 𝑋  +  𝑦 ) ) )  ∧  ( ! ‘ ( 𝑌  +  𝑦 ) )  ∈  ℝ )  ∧  ( ( ( ( 𝑋  +  𝑦 )  +  1 )  ∈  ℝ  ∧  0  ≤  ( ( 𝑋  +  𝑦 )  +  1 ) )  ∧  ( ( 𝑌  +  𝑦 )  +  1 )  ∈  ℝ ) ) ) | 
						
							| 103 |  | lemul12a | ⊢ ( ( ( ( ( ! ‘ ( 𝑋  +  𝑦 ) )  ∈  ℝ  ∧  0  ≤  ( ! ‘ ( 𝑋  +  𝑦 ) ) )  ∧  ( ! ‘ ( 𝑌  +  𝑦 ) )  ∈  ℝ )  ∧  ( ( ( ( 𝑋  +  𝑦 )  +  1 )  ∈  ℝ  ∧  0  ≤  ( ( 𝑋  +  𝑦 )  +  1 ) )  ∧  ( ( 𝑌  +  𝑦 )  +  1 )  ∈  ℝ ) )  →  ( ( ( ! ‘ ( 𝑋  +  𝑦 ) )  ≤  ( ! ‘ ( 𝑌  +  𝑦 ) )  ∧  ( ( 𝑋  +  𝑦 )  +  1 )  ≤  ( ( 𝑌  +  𝑦 )  +  1 ) )  →  ( ( ! ‘ ( 𝑋  +  𝑦 ) )  ·  ( ( 𝑋  +  𝑦 )  +  1 ) )  ≤  ( ( ! ‘ ( 𝑌  +  𝑦 ) )  ·  ( ( 𝑌  +  𝑦 )  +  1 ) ) ) ) | 
						
							| 104 | 102 103 | syl | ⊢ ( ( 𝑋  ∈  ℕ0  ∧  𝑌  ∈  ℕ0  ∧  𝑦  ∈  ℕ0 )  →  ( ( ( ! ‘ ( 𝑋  +  𝑦 ) )  ≤  ( ! ‘ ( 𝑌  +  𝑦 ) )  ∧  ( ( 𝑋  +  𝑦 )  +  1 )  ≤  ( ( 𝑌  +  𝑦 )  +  1 ) )  →  ( ( ! ‘ ( 𝑋  +  𝑦 ) )  ·  ( ( 𝑋  +  𝑦 )  +  1 ) )  ≤  ( ( ! ‘ ( 𝑌  +  𝑦 ) )  ·  ( ( 𝑌  +  𝑦 )  +  1 ) ) ) ) | 
						
							| 105 | 104 | 3expa | ⊢ ( ( ( 𝑋  ∈  ℕ0  ∧  𝑌  ∈  ℕ0 )  ∧  𝑦  ∈  ℕ0 )  →  ( ( ( ! ‘ ( 𝑋  +  𝑦 ) )  ≤  ( ! ‘ ( 𝑌  +  𝑦 ) )  ∧  ( ( 𝑋  +  𝑦 )  +  1 )  ≤  ( ( 𝑌  +  𝑦 )  +  1 ) )  →  ( ( ! ‘ ( 𝑋  +  𝑦 ) )  ·  ( ( 𝑋  +  𝑦 )  +  1 ) )  ≤  ( ( ! ‘ ( 𝑌  +  𝑦 ) )  ·  ( ( 𝑌  +  𝑦 )  +  1 ) ) ) ) | 
						
							| 106 | 105 | 3adantl3 | ⊢ ( ( ( 𝑋  ∈  ℕ0  ∧  𝑌  ∈  ℕ0  ∧  𝑋  ≤  𝑌 )  ∧  𝑦  ∈  ℕ0 )  →  ( ( ( ! ‘ ( 𝑋  +  𝑦 ) )  ≤  ( ! ‘ ( 𝑌  +  𝑦 ) )  ∧  ( ( 𝑋  +  𝑦 )  +  1 )  ≤  ( ( 𝑌  +  𝑦 )  +  1 ) )  →  ( ( ! ‘ ( 𝑋  +  𝑦 ) )  ·  ( ( 𝑋  +  𝑦 )  +  1 ) )  ≤  ( ( ! ‘ ( 𝑌  +  𝑦 ) )  ·  ( ( 𝑌  +  𝑦 )  +  1 ) ) ) ) | 
						
							| 107 | 67 106 | mpd | ⊢ ( ( ( 𝑋  ∈  ℕ0  ∧  𝑌  ∈  ℕ0  ∧  𝑋  ≤  𝑌 )  ∧  𝑦  ∈  ℕ0 )  →  ( ( ! ‘ ( 𝑋  +  𝑦 ) )  ·  ( ( 𝑋  +  𝑦 )  +  1 ) )  ≤  ( ( ! ‘ ( 𝑌  +  𝑦 ) )  ·  ( ( 𝑌  +  𝑦 )  +  1 ) ) ) | 
						
							| 108 |  | facp1 | ⊢ ( ( 𝑋  +  𝑦 )  ∈  ℕ0  →  ( ! ‘ ( ( 𝑋  +  𝑦 )  +  1 ) )  =  ( ( ! ‘ ( 𝑋  +  𝑦 ) )  ·  ( ( 𝑋  +  𝑦 )  +  1 ) ) ) | 
						
							| 109 | 43 108 | syl | ⊢ ( ( ( 𝑋  ∈  ℕ0  ∧  𝑌  ∈  ℕ0  ∧  𝑦  ∈  ℕ0 )  ∧  𝑋  ≤  𝑌 )  →  ( ! ‘ ( ( 𝑋  +  𝑦 )  +  1 ) )  =  ( ( ! ‘ ( 𝑋  +  𝑦 ) )  ·  ( ( 𝑋  +  𝑦 )  +  1 ) ) ) | 
						
							| 110 |  | facp1 | ⊢ ( ( 𝑌  +  𝑦 )  ∈  ℕ0  →  ( ! ‘ ( ( 𝑌  +  𝑦 )  +  1 ) )  =  ( ( ! ‘ ( 𝑌  +  𝑦 ) )  ·  ( ( 𝑌  +  𝑦 )  +  1 ) ) ) | 
						
							| 111 | 46 110 | syl | ⊢ ( ( ( 𝑋  ∈  ℕ0  ∧  𝑌  ∈  ℕ0  ∧  𝑦  ∈  ℕ0 )  ∧  𝑋  ≤  𝑌 )  →  ( ! ‘ ( ( 𝑌  +  𝑦 )  +  1 ) )  =  ( ( ! ‘ ( 𝑌  +  𝑦 ) )  ·  ( ( 𝑌  +  𝑦 )  +  1 ) ) ) | 
						
							| 112 | 109 111 | jca | ⊢ ( ( ( 𝑋  ∈  ℕ0  ∧  𝑌  ∈  ℕ0  ∧  𝑦  ∈  ℕ0 )  ∧  𝑋  ≤  𝑌 )  →  ( ( ! ‘ ( ( 𝑋  +  𝑦 )  +  1 ) )  =  ( ( ! ‘ ( 𝑋  +  𝑦 ) )  ·  ( ( 𝑋  +  𝑦 )  +  1 ) )  ∧  ( ! ‘ ( ( 𝑌  +  𝑦 )  +  1 ) )  =  ( ( ! ‘ ( 𝑌  +  𝑦 ) )  ·  ( ( 𝑌  +  𝑦 )  +  1 ) ) ) ) | 
						
							| 113 |  | breq12 | ⊢ ( ( ( ! ‘ ( ( 𝑋  +  𝑦 )  +  1 ) )  =  ( ( ! ‘ ( 𝑋  +  𝑦 ) )  ·  ( ( 𝑋  +  𝑦 )  +  1 ) )  ∧  ( ! ‘ ( ( 𝑌  +  𝑦 )  +  1 ) )  =  ( ( ! ‘ ( 𝑌  +  𝑦 ) )  ·  ( ( 𝑌  +  𝑦 )  +  1 ) ) )  →  ( ( ! ‘ ( ( 𝑋  +  𝑦 )  +  1 ) )  ≤  ( ! ‘ ( ( 𝑌  +  𝑦 )  +  1 ) )  ↔  ( ( ! ‘ ( 𝑋  +  𝑦 ) )  ·  ( ( 𝑋  +  𝑦 )  +  1 ) )  ≤  ( ( ! ‘ ( 𝑌  +  𝑦 ) )  ·  ( ( 𝑌  +  𝑦 )  +  1 ) ) ) ) | 
						
							| 114 | 112 113 | syl | ⊢ ( ( ( 𝑋  ∈  ℕ0  ∧  𝑌  ∈  ℕ0  ∧  𝑦  ∈  ℕ0 )  ∧  𝑋  ≤  𝑌 )  →  ( ( ! ‘ ( ( 𝑋  +  𝑦 )  +  1 ) )  ≤  ( ! ‘ ( ( 𝑌  +  𝑦 )  +  1 ) )  ↔  ( ( ! ‘ ( 𝑋  +  𝑦 ) )  ·  ( ( 𝑋  +  𝑦 )  +  1 ) )  ≤  ( ( ! ‘ ( 𝑌  +  𝑦 ) )  ·  ( ( 𝑌  +  𝑦 )  +  1 ) ) ) ) | 
						
							| 115 | 114 | 3an1rs | ⊢ ( ( ( 𝑋  ∈  ℕ0  ∧  𝑌  ∈  ℕ0  ∧  𝑋  ≤  𝑌 )  ∧  𝑦  ∈  ℕ0 )  →  ( ( ! ‘ ( ( 𝑋  +  𝑦 )  +  1 ) )  ≤  ( ! ‘ ( ( 𝑌  +  𝑦 )  +  1 ) )  ↔  ( ( ! ‘ ( 𝑋  +  𝑦 ) )  ·  ( ( 𝑋  +  𝑦 )  +  1 ) )  ≤  ( ( ! ‘ ( 𝑌  +  𝑦 ) )  ·  ( ( 𝑌  +  𝑦 )  +  1 ) ) ) ) | 
						
							| 116 | 107 115 | mpbird | ⊢ ( ( ( 𝑋  ∈  ℕ0  ∧  𝑌  ∈  ℕ0  ∧  𝑋  ≤  𝑌 )  ∧  𝑦  ∈  ℕ0 )  →  ( ! ‘ ( ( 𝑋  +  𝑦 )  +  1 ) )  ≤  ( ! ‘ ( ( 𝑌  +  𝑦 )  +  1 ) ) ) | 
						
							| 117 | 116 | adantr | ⊢ ( ( ( ( 𝑋  ∈  ℕ0  ∧  𝑌  ∈  ℕ0  ∧  𝑋  ≤  𝑌 )  ∧  𝑦  ∈  ℕ0 )  ∧  ( ! ‘ ( 𝑋  +  𝑦 ) )  ≤  ( ! ‘ ( 𝑌  +  𝑦 ) ) )  →  ( ! ‘ ( ( 𝑋  +  𝑦 )  +  1 ) )  ≤  ( ! ‘ ( ( 𝑌  +  𝑦 )  +  1 ) ) ) | 
						
							| 118 |  | addass | ⊢ ( ( 𝑌  ∈  ℂ  ∧  𝑦  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( ( 𝑌  +  𝑦 )  +  1 )  =  ( 𝑌  +  ( 𝑦  +  1 ) ) ) | 
						
							| 119 | 34 118 | mp3an3 | ⊢ ( ( 𝑌  ∈  ℂ  ∧  𝑦  ∈  ℂ )  →  ( ( 𝑌  +  𝑦 )  +  1 )  =  ( 𝑌  +  ( 𝑦  +  1 ) ) ) | 
						
							| 120 | 27 33 119 | syl2an | ⊢ ( ( 𝑌  ∈  ℕ0  ∧  𝑦  ∈  ℕ0 )  →  ( ( 𝑌  +  𝑦 )  +  1 )  =  ( 𝑌  +  ( 𝑦  +  1 ) ) ) | 
						
							| 121 | 120 | fveq2d | ⊢ ( ( 𝑌  ∈  ℕ0  ∧  𝑦  ∈  ℕ0 )  →  ( ! ‘ ( ( 𝑌  +  𝑦 )  +  1 ) )  =  ( ! ‘ ( 𝑌  +  ( 𝑦  +  1 ) ) ) ) | 
						
							| 122 | 121 | 3ad2antl2 | ⊢ ( ( ( 𝑋  ∈  ℕ0  ∧  𝑌  ∈  ℕ0  ∧  𝑋  ≤  𝑌 )  ∧  𝑦  ∈  ℕ0 )  →  ( ! ‘ ( ( 𝑌  +  𝑦 )  +  1 ) )  =  ( ! ‘ ( 𝑌  +  ( 𝑦  +  1 ) ) ) ) | 
						
							| 123 | 122 | adantr | ⊢ ( ( ( ( 𝑋  ∈  ℕ0  ∧  𝑌  ∈  ℕ0  ∧  𝑋  ≤  𝑌 )  ∧  𝑦  ∈  ℕ0 )  ∧  ( ! ‘ ( 𝑋  +  𝑦 ) )  ≤  ( ! ‘ ( 𝑌  +  𝑦 ) ) )  →  ( ! ‘ ( ( 𝑌  +  𝑦 )  +  1 ) )  =  ( ! ‘ ( 𝑌  +  ( 𝑦  +  1 ) ) ) ) | 
						
							| 124 | 117 123 | breqtrd | ⊢ ( ( ( ( 𝑋  ∈  ℕ0  ∧  𝑌  ∈  ℕ0  ∧  𝑋  ≤  𝑌 )  ∧  𝑦  ∈  ℕ0 )  ∧  ( ! ‘ ( 𝑋  +  𝑦 ) )  ≤  ( ! ‘ ( 𝑌  +  𝑦 ) ) )  →  ( ! ‘ ( ( 𝑋  +  𝑦 )  +  1 ) )  ≤  ( ! ‘ ( 𝑌  +  ( 𝑦  +  1 ) ) ) ) | 
						
							| 125 | 40 124 | eqbrtrrd | ⊢ ( ( ( ( 𝑋  ∈  ℕ0  ∧  𝑌  ∈  ℕ0  ∧  𝑋  ≤  𝑌 )  ∧  𝑦  ∈  ℕ0 )  ∧  ( ! ‘ ( 𝑋  +  𝑦 ) )  ≤  ( ! ‘ ( 𝑌  +  𝑦 ) ) )  →  ( ! ‘ ( 𝑋  +  ( 𝑦  +  1 ) ) )  ≤  ( ! ‘ ( 𝑌  +  ( 𝑦  +  1 ) ) ) ) | 
						
							| 126 | 5 10 15 20 32 125 | nn0indd | ⊢ ( ( ( 𝑋  ∈  ℕ0  ∧  𝑌  ∈  ℕ0  ∧  𝑋  ≤  𝑌 )  ∧  𝑁  ∈  ℕ0 )  →  ( ! ‘ ( 𝑋  +  𝑁 ) )  ≤  ( ! ‘ ( 𝑌  +  𝑁 ) ) ) |