Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
⊢ ( 𝑥 = 0 → ( 𝑋 + 𝑥 ) = ( 𝑋 + 0 ) ) |
2 |
1
|
fveq2d |
⊢ ( 𝑥 = 0 → ( ! ‘ ( 𝑋 + 𝑥 ) ) = ( ! ‘ ( 𝑋 + 0 ) ) ) |
3 |
|
oveq2 |
⊢ ( 𝑥 = 0 → ( 𝑌 + 𝑥 ) = ( 𝑌 + 0 ) ) |
4 |
3
|
fveq2d |
⊢ ( 𝑥 = 0 → ( ! ‘ ( 𝑌 + 𝑥 ) ) = ( ! ‘ ( 𝑌 + 0 ) ) ) |
5 |
2 4
|
breq12d |
⊢ ( 𝑥 = 0 → ( ( ! ‘ ( 𝑋 + 𝑥 ) ) ≤ ( ! ‘ ( 𝑌 + 𝑥 ) ) ↔ ( ! ‘ ( 𝑋 + 0 ) ) ≤ ( ! ‘ ( 𝑌 + 0 ) ) ) ) |
6 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝑋 + 𝑥 ) = ( 𝑋 + 𝑦 ) ) |
7 |
6
|
fveq2d |
⊢ ( 𝑥 = 𝑦 → ( ! ‘ ( 𝑋 + 𝑥 ) ) = ( ! ‘ ( 𝑋 + 𝑦 ) ) ) |
8 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝑌 + 𝑥 ) = ( 𝑌 + 𝑦 ) ) |
9 |
8
|
fveq2d |
⊢ ( 𝑥 = 𝑦 → ( ! ‘ ( 𝑌 + 𝑥 ) ) = ( ! ‘ ( 𝑌 + 𝑦 ) ) ) |
10 |
7 9
|
breq12d |
⊢ ( 𝑥 = 𝑦 → ( ( ! ‘ ( 𝑋 + 𝑥 ) ) ≤ ( ! ‘ ( 𝑌 + 𝑥 ) ) ↔ ( ! ‘ ( 𝑋 + 𝑦 ) ) ≤ ( ! ‘ ( 𝑌 + 𝑦 ) ) ) ) |
11 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑋 + 𝑥 ) = ( 𝑋 + ( 𝑦 + 1 ) ) ) |
12 |
11
|
fveq2d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ! ‘ ( 𝑋 + 𝑥 ) ) = ( ! ‘ ( 𝑋 + ( 𝑦 + 1 ) ) ) ) |
13 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑌 + 𝑥 ) = ( 𝑌 + ( 𝑦 + 1 ) ) ) |
14 |
13
|
fveq2d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ! ‘ ( 𝑌 + 𝑥 ) ) = ( ! ‘ ( 𝑌 + ( 𝑦 + 1 ) ) ) ) |
15 |
12 14
|
breq12d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( ! ‘ ( 𝑋 + 𝑥 ) ) ≤ ( ! ‘ ( 𝑌 + 𝑥 ) ) ↔ ( ! ‘ ( 𝑋 + ( 𝑦 + 1 ) ) ) ≤ ( ! ‘ ( 𝑌 + ( 𝑦 + 1 ) ) ) ) ) |
16 |
|
oveq2 |
⊢ ( 𝑥 = 𝑁 → ( 𝑋 + 𝑥 ) = ( 𝑋 + 𝑁 ) ) |
17 |
16
|
fveq2d |
⊢ ( 𝑥 = 𝑁 → ( ! ‘ ( 𝑋 + 𝑥 ) ) = ( ! ‘ ( 𝑋 + 𝑁 ) ) ) |
18 |
|
oveq2 |
⊢ ( 𝑥 = 𝑁 → ( 𝑌 + 𝑥 ) = ( 𝑌 + 𝑁 ) ) |
19 |
18
|
fveq2d |
⊢ ( 𝑥 = 𝑁 → ( ! ‘ ( 𝑌 + 𝑥 ) ) = ( ! ‘ ( 𝑌 + 𝑁 ) ) ) |
20 |
17 19
|
breq12d |
⊢ ( 𝑥 = 𝑁 → ( ( ! ‘ ( 𝑋 + 𝑥 ) ) ≤ ( ! ‘ ( 𝑌 + 𝑥 ) ) ↔ ( ! ‘ ( 𝑋 + 𝑁 ) ) ≤ ( ! ‘ ( 𝑌 + 𝑁 ) ) ) ) |
21 |
|
facwordi |
⊢ ( ( 𝑋 ∈ ℕ0 ∧ 𝑌 ∈ ℕ0 ∧ 𝑋 ≤ 𝑌 ) → ( ! ‘ 𝑋 ) ≤ ( ! ‘ 𝑌 ) ) |
22 |
|
nn0cn |
⊢ ( 𝑋 ∈ ℕ0 → 𝑋 ∈ ℂ ) |
23 |
|
addid1 |
⊢ ( 𝑋 ∈ ℂ → ( 𝑋 + 0 ) = 𝑋 ) |
24 |
22 23
|
syl |
⊢ ( 𝑋 ∈ ℕ0 → ( 𝑋 + 0 ) = 𝑋 ) |
25 |
24
|
fveq2d |
⊢ ( 𝑋 ∈ ℕ0 → ( ! ‘ ( 𝑋 + 0 ) ) = ( ! ‘ 𝑋 ) ) |
26 |
25
|
3ad2ant1 |
⊢ ( ( 𝑋 ∈ ℕ0 ∧ 𝑌 ∈ ℕ0 ∧ 𝑋 ≤ 𝑌 ) → ( ! ‘ ( 𝑋 + 0 ) ) = ( ! ‘ 𝑋 ) ) |
27 |
|
nn0cn |
⊢ ( 𝑌 ∈ ℕ0 → 𝑌 ∈ ℂ ) |
28 |
|
addid1 |
⊢ ( 𝑌 ∈ ℂ → ( 𝑌 + 0 ) = 𝑌 ) |
29 |
27 28
|
syl |
⊢ ( 𝑌 ∈ ℕ0 → ( 𝑌 + 0 ) = 𝑌 ) |
30 |
29
|
fveq2d |
⊢ ( 𝑌 ∈ ℕ0 → ( ! ‘ ( 𝑌 + 0 ) ) = ( ! ‘ 𝑌 ) ) |
31 |
30
|
3ad2ant2 |
⊢ ( ( 𝑋 ∈ ℕ0 ∧ 𝑌 ∈ ℕ0 ∧ 𝑋 ≤ 𝑌 ) → ( ! ‘ ( 𝑌 + 0 ) ) = ( ! ‘ 𝑌 ) ) |
32 |
21 26 31
|
3brtr4d |
⊢ ( ( 𝑋 ∈ ℕ0 ∧ 𝑌 ∈ ℕ0 ∧ 𝑋 ≤ 𝑌 ) → ( ! ‘ ( 𝑋 + 0 ) ) ≤ ( ! ‘ ( 𝑌 + 0 ) ) ) |
33 |
|
nn0cn |
⊢ ( 𝑦 ∈ ℕ0 → 𝑦 ∈ ℂ ) |
34 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
35 |
|
addass |
⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑋 + 𝑦 ) + 1 ) = ( 𝑋 + ( 𝑦 + 1 ) ) ) |
36 |
34 35
|
mp3an3 |
⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ( 𝑋 + 𝑦 ) + 1 ) = ( 𝑋 + ( 𝑦 + 1 ) ) ) |
37 |
22 33 36
|
syl2an |
⊢ ( ( 𝑋 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝑋 + 𝑦 ) + 1 ) = ( 𝑋 + ( 𝑦 + 1 ) ) ) |
38 |
37
|
fveq2d |
⊢ ( ( 𝑋 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) → ( ! ‘ ( ( 𝑋 + 𝑦 ) + 1 ) ) = ( ! ‘ ( 𝑋 + ( 𝑦 + 1 ) ) ) ) |
39 |
38
|
3ad2antl1 |
⊢ ( ( ( 𝑋 ∈ ℕ0 ∧ 𝑌 ∈ ℕ0 ∧ 𝑋 ≤ 𝑌 ) ∧ 𝑦 ∈ ℕ0 ) → ( ! ‘ ( ( 𝑋 + 𝑦 ) + 1 ) ) = ( ! ‘ ( 𝑋 + ( 𝑦 + 1 ) ) ) ) |
40 |
39
|
adantr |
⊢ ( ( ( ( 𝑋 ∈ ℕ0 ∧ 𝑌 ∈ ℕ0 ∧ 𝑋 ≤ 𝑌 ) ∧ 𝑦 ∈ ℕ0 ) ∧ ( ! ‘ ( 𝑋 + 𝑦 ) ) ≤ ( ! ‘ ( 𝑌 + 𝑦 ) ) ) → ( ! ‘ ( ( 𝑋 + 𝑦 ) + 1 ) ) = ( ! ‘ ( 𝑋 + ( 𝑦 + 1 ) ) ) ) |
41 |
|
nn0addcl |
⊢ ( ( 𝑋 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) → ( 𝑋 + 𝑦 ) ∈ ℕ0 ) |
42 |
41
|
3adant2 |
⊢ ( ( 𝑋 ∈ ℕ0 ∧ 𝑌 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) → ( 𝑋 + 𝑦 ) ∈ ℕ0 ) |
43 |
42
|
adantr |
⊢ ( ( ( 𝑋 ∈ ℕ0 ∧ 𝑌 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑋 ≤ 𝑌 ) → ( 𝑋 + 𝑦 ) ∈ ℕ0 ) |
44 |
|
nn0addcl |
⊢ ( ( 𝑌 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) → ( 𝑌 + 𝑦 ) ∈ ℕ0 ) |
45 |
44
|
3adant1 |
⊢ ( ( 𝑋 ∈ ℕ0 ∧ 𝑌 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) → ( 𝑌 + 𝑦 ) ∈ ℕ0 ) |
46 |
45
|
adantr |
⊢ ( ( ( 𝑋 ∈ ℕ0 ∧ 𝑌 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑋 ≤ 𝑌 ) → ( 𝑌 + 𝑦 ) ∈ ℕ0 ) |
47 |
|
nn0re |
⊢ ( 𝑋 ∈ ℕ0 → 𝑋 ∈ ℝ ) |
48 |
|
nn0re |
⊢ ( 𝑌 ∈ ℕ0 → 𝑌 ∈ ℝ ) |
49 |
|
nn0re |
⊢ ( 𝑦 ∈ ℕ0 → 𝑦 ∈ ℝ ) |
50 |
|
leadd1 |
⊢ ( ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑋 ≤ 𝑌 ↔ ( 𝑋 + 𝑦 ) ≤ ( 𝑌 + 𝑦 ) ) ) |
51 |
47 48 49 50
|
syl3an |
⊢ ( ( 𝑋 ∈ ℕ0 ∧ 𝑌 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) → ( 𝑋 ≤ 𝑌 ↔ ( 𝑋 + 𝑦 ) ≤ ( 𝑌 + 𝑦 ) ) ) |
52 |
51
|
biimpa |
⊢ ( ( ( 𝑋 ∈ ℕ0 ∧ 𝑌 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑋 ≤ 𝑌 ) → ( 𝑋 + 𝑦 ) ≤ ( 𝑌 + 𝑦 ) ) |
53 |
|
facwordi |
⊢ ( ( ( 𝑋 + 𝑦 ) ∈ ℕ0 ∧ ( 𝑌 + 𝑦 ) ∈ ℕ0 ∧ ( 𝑋 + 𝑦 ) ≤ ( 𝑌 + 𝑦 ) ) → ( ! ‘ ( 𝑋 + 𝑦 ) ) ≤ ( ! ‘ ( 𝑌 + 𝑦 ) ) ) |
54 |
43 46 52 53
|
syl3anc |
⊢ ( ( ( 𝑋 ∈ ℕ0 ∧ 𝑌 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑋 ≤ 𝑌 ) → ( ! ‘ ( 𝑋 + 𝑦 ) ) ≤ ( ! ‘ ( 𝑌 + 𝑦 ) ) ) |
55 |
54
|
3an1rs |
⊢ ( ( ( 𝑋 ∈ ℕ0 ∧ 𝑌 ∈ ℕ0 ∧ 𝑋 ≤ 𝑌 ) ∧ 𝑦 ∈ ℕ0 ) → ( ! ‘ ( 𝑋 + 𝑦 ) ) ≤ ( ! ‘ ( 𝑌 + 𝑦 ) ) ) |
56 |
|
nn0re |
⊢ ( ( 𝑋 + 𝑦 ) ∈ ℕ0 → ( 𝑋 + 𝑦 ) ∈ ℝ ) |
57 |
43 56
|
syl |
⊢ ( ( ( 𝑋 ∈ ℕ0 ∧ 𝑌 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑋 ≤ 𝑌 ) → ( 𝑋 + 𝑦 ) ∈ ℝ ) |
58 |
|
nn0re |
⊢ ( ( 𝑌 + 𝑦 ) ∈ ℕ0 → ( 𝑌 + 𝑦 ) ∈ ℝ ) |
59 |
46 58
|
syl |
⊢ ( ( ( 𝑋 ∈ ℕ0 ∧ 𝑌 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑋 ≤ 𝑌 ) → ( 𝑌 + 𝑦 ) ∈ ℝ ) |
60 |
57 59
|
jca |
⊢ ( ( ( 𝑋 ∈ ℕ0 ∧ 𝑌 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑋 ≤ 𝑌 ) → ( ( 𝑋 + 𝑦 ) ∈ ℝ ∧ ( 𝑌 + 𝑦 ) ∈ ℝ ) ) |
61 |
|
1re |
⊢ 1 ∈ ℝ |
62 |
|
leadd1 |
⊢ ( ( ( 𝑋 + 𝑦 ) ∈ ℝ ∧ ( 𝑌 + 𝑦 ) ∈ ℝ ∧ 1 ∈ ℝ ) → ( ( 𝑋 + 𝑦 ) ≤ ( 𝑌 + 𝑦 ) ↔ ( ( 𝑋 + 𝑦 ) + 1 ) ≤ ( ( 𝑌 + 𝑦 ) + 1 ) ) ) |
63 |
61 62
|
mp3an3 |
⊢ ( ( ( 𝑋 + 𝑦 ) ∈ ℝ ∧ ( 𝑌 + 𝑦 ) ∈ ℝ ) → ( ( 𝑋 + 𝑦 ) ≤ ( 𝑌 + 𝑦 ) ↔ ( ( 𝑋 + 𝑦 ) + 1 ) ≤ ( ( 𝑌 + 𝑦 ) + 1 ) ) ) |
64 |
60 63
|
syl |
⊢ ( ( ( 𝑋 ∈ ℕ0 ∧ 𝑌 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑋 ≤ 𝑌 ) → ( ( 𝑋 + 𝑦 ) ≤ ( 𝑌 + 𝑦 ) ↔ ( ( 𝑋 + 𝑦 ) + 1 ) ≤ ( ( 𝑌 + 𝑦 ) + 1 ) ) ) |
65 |
52 64
|
mpbid |
⊢ ( ( ( 𝑋 ∈ ℕ0 ∧ 𝑌 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑋 ≤ 𝑌 ) → ( ( 𝑋 + 𝑦 ) + 1 ) ≤ ( ( 𝑌 + 𝑦 ) + 1 ) ) |
66 |
65
|
3an1rs |
⊢ ( ( ( 𝑋 ∈ ℕ0 ∧ 𝑌 ∈ ℕ0 ∧ 𝑋 ≤ 𝑌 ) ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝑋 + 𝑦 ) + 1 ) ≤ ( ( 𝑌 + 𝑦 ) + 1 ) ) |
67 |
55 66
|
jca |
⊢ ( ( ( 𝑋 ∈ ℕ0 ∧ 𝑌 ∈ ℕ0 ∧ 𝑋 ≤ 𝑌 ) ∧ 𝑦 ∈ ℕ0 ) → ( ( ! ‘ ( 𝑋 + 𝑦 ) ) ≤ ( ! ‘ ( 𝑌 + 𝑦 ) ) ∧ ( ( 𝑋 + 𝑦 ) + 1 ) ≤ ( ( 𝑌 + 𝑦 ) + 1 ) ) ) |
68 |
|
faccl |
⊢ ( ( 𝑋 + 𝑦 ) ∈ ℕ0 → ( ! ‘ ( 𝑋 + 𝑦 ) ) ∈ ℕ ) |
69 |
|
nnre |
⊢ ( ( ! ‘ ( 𝑋 + 𝑦 ) ) ∈ ℕ → ( ! ‘ ( 𝑋 + 𝑦 ) ) ∈ ℝ ) |
70 |
41 68 69
|
3syl |
⊢ ( ( 𝑋 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) → ( ! ‘ ( 𝑋 + 𝑦 ) ) ∈ ℝ ) |
71 |
70
|
3adant2 |
⊢ ( ( 𝑋 ∈ ℕ0 ∧ 𝑌 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) → ( ! ‘ ( 𝑋 + 𝑦 ) ) ∈ ℝ ) |
72 |
|
nngt0 |
⊢ ( ( ! ‘ ( 𝑋 + 𝑦 ) ) ∈ ℕ → 0 < ( ! ‘ ( 𝑋 + 𝑦 ) ) ) |
73 |
41 68 72
|
3syl |
⊢ ( ( 𝑋 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) → 0 < ( ! ‘ ( 𝑋 + 𝑦 ) ) ) |
74 |
|
0re |
⊢ 0 ∈ ℝ |
75 |
|
ltle |
⊢ ( ( 0 ∈ ℝ ∧ ( ! ‘ ( 𝑋 + 𝑦 ) ) ∈ ℝ ) → ( 0 < ( ! ‘ ( 𝑋 + 𝑦 ) ) → 0 ≤ ( ! ‘ ( 𝑋 + 𝑦 ) ) ) ) |
76 |
74 75
|
mpan |
⊢ ( ( ! ‘ ( 𝑋 + 𝑦 ) ) ∈ ℝ → ( 0 < ( ! ‘ ( 𝑋 + 𝑦 ) ) → 0 ≤ ( ! ‘ ( 𝑋 + 𝑦 ) ) ) ) |
77 |
70 76
|
syl |
⊢ ( ( 𝑋 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) → ( 0 < ( ! ‘ ( 𝑋 + 𝑦 ) ) → 0 ≤ ( ! ‘ ( 𝑋 + 𝑦 ) ) ) ) |
78 |
73 77
|
mpd |
⊢ ( ( 𝑋 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) → 0 ≤ ( ! ‘ ( 𝑋 + 𝑦 ) ) ) |
79 |
78
|
3adant2 |
⊢ ( ( 𝑋 ∈ ℕ0 ∧ 𝑌 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) → 0 ≤ ( ! ‘ ( 𝑋 + 𝑦 ) ) ) |
80 |
71 79
|
jca |
⊢ ( ( 𝑋 ∈ ℕ0 ∧ 𝑌 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) → ( ( ! ‘ ( 𝑋 + 𝑦 ) ) ∈ ℝ ∧ 0 ≤ ( ! ‘ ( 𝑋 + 𝑦 ) ) ) ) |
81 |
|
faccl |
⊢ ( ( 𝑌 + 𝑦 ) ∈ ℕ0 → ( ! ‘ ( 𝑌 + 𝑦 ) ) ∈ ℕ ) |
82 |
|
nnre |
⊢ ( ( ! ‘ ( 𝑌 + 𝑦 ) ) ∈ ℕ → ( ! ‘ ( 𝑌 + 𝑦 ) ) ∈ ℝ ) |
83 |
44 81 82
|
3syl |
⊢ ( ( 𝑌 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) → ( ! ‘ ( 𝑌 + 𝑦 ) ) ∈ ℝ ) |
84 |
83
|
3adant1 |
⊢ ( ( 𝑋 ∈ ℕ0 ∧ 𝑌 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) → ( ! ‘ ( 𝑌 + 𝑦 ) ) ∈ ℝ ) |
85 |
80 84
|
jca |
⊢ ( ( 𝑋 ∈ ℕ0 ∧ 𝑌 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) → ( ( ( ! ‘ ( 𝑋 + 𝑦 ) ) ∈ ℝ ∧ 0 ≤ ( ! ‘ ( 𝑋 + 𝑦 ) ) ) ∧ ( ! ‘ ( 𝑌 + 𝑦 ) ) ∈ ℝ ) ) |
86 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
87 |
|
nn0addcl |
⊢ ( ( ( 𝑋 + 𝑦 ) ∈ ℕ0 ∧ 1 ∈ ℕ0 ) → ( ( 𝑋 + 𝑦 ) + 1 ) ∈ ℕ0 ) |
88 |
86 87
|
mpan2 |
⊢ ( ( 𝑋 + 𝑦 ) ∈ ℕ0 → ( ( 𝑋 + 𝑦 ) + 1 ) ∈ ℕ0 ) |
89 |
41 88
|
syl |
⊢ ( ( 𝑋 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝑋 + 𝑦 ) + 1 ) ∈ ℕ0 ) |
90 |
|
nn0re |
⊢ ( ( ( 𝑋 + 𝑦 ) + 1 ) ∈ ℕ0 → ( ( 𝑋 + 𝑦 ) + 1 ) ∈ ℝ ) |
91 |
89 90
|
syl |
⊢ ( ( 𝑋 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝑋 + 𝑦 ) + 1 ) ∈ ℝ ) |
92 |
91
|
3adant2 |
⊢ ( ( 𝑋 ∈ ℕ0 ∧ 𝑌 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝑋 + 𝑦 ) + 1 ) ∈ ℝ ) |
93 |
|
nn0ge0 |
⊢ ( ( ( 𝑋 + 𝑦 ) + 1 ) ∈ ℕ0 → 0 ≤ ( ( 𝑋 + 𝑦 ) + 1 ) ) |
94 |
89 93
|
syl |
⊢ ( ( 𝑋 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) → 0 ≤ ( ( 𝑋 + 𝑦 ) + 1 ) ) |
95 |
94
|
3adant2 |
⊢ ( ( 𝑋 ∈ ℕ0 ∧ 𝑌 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) → 0 ≤ ( ( 𝑋 + 𝑦 ) + 1 ) ) |
96 |
92 95
|
jca |
⊢ ( ( 𝑋 ∈ ℕ0 ∧ 𝑌 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) → ( ( ( 𝑋 + 𝑦 ) + 1 ) ∈ ℝ ∧ 0 ≤ ( ( 𝑋 + 𝑦 ) + 1 ) ) ) |
97 |
|
nn0readdcl |
⊢ ( ( 𝑌 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) → ( 𝑌 + 𝑦 ) ∈ ℝ ) |
98 |
|
1red |
⊢ ( ( 𝑌 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) → 1 ∈ ℝ ) |
99 |
97 98
|
readdcld |
⊢ ( ( 𝑌 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝑌 + 𝑦 ) + 1 ) ∈ ℝ ) |
100 |
99
|
3adant1 |
⊢ ( ( 𝑋 ∈ ℕ0 ∧ 𝑌 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝑌 + 𝑦 ) + 1 ) ∈ ℝ ) |
101 |
96 100
|
jca |
⊢ ( ( 𝑋 ∈ ℕ0 ∧ 𝑌 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) → ( ( ( ( 𝑋 + 𝑦 ) + 1 ) ∈ ℝ ∧ 0 ≤ ( ( 𝑋 + 𝑦 ) + 1 ) ) ∧ ( ( 𝑌 + 𝑦 ) + 1 ) ∈ ℝ ) ) |
102 |
85 101
|
jca |
⊢ ( ( 𝑋 ∈ ℕ0 ∧ 𝑌 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) → ( ( ( ( ! ‘ ( 𝑋 + 𝑦 ) ) ∈ ℝ ∧ 0 ≤ ( ! ‘ ( 𝑋 + 𝑦 ) ) ) ∧ ( ! ‘ ( 𝑌 + 𝑦 ) ) ∈ ℝ ) ∧ ( ( ( ( 𝑋 + 𝑦 ) + 1 ) ∈ ℝ ∧ 0 ≤ ( ( 𝑋 + 𝑦 ) + 1 ) ) ∧ ( ( 𝑌 + 𝑦 ) + 1 ) ∈ ℝ ) ) ) |
103 |
|
lemul12a |
⊢ ( ( ( ( ( ! ‘ ( 𝑋 + 𝑦 ) ) ∈ ℝ ∧ 0 ≤ ( ! ‘ ( 𝑋 + 𝑦 ) ) ) ∧ ( ! ‘ ( 𝑌 + 𝑦 ) ) ∈ ℝ ) ∧ ( ( ( ( 𝑋 + 𝑦 ) + 1 ) ∈ ℝ ∧ 0 ≤ ( ( 𝑋 + 𝑦 ) + 1 ) ) ∧ ( ( 𝑌 + 𝑦 ) + 1 ) ∈ ℝ ) ) → ( ( ( ! ‘ ( 𝑋 + 𝑦 ) ) ≤ ( ! ‘ ( 𝑌 + 𝑦 ) ) ∧ ( ( 𝑋 + 𝑦 ) + 1 ) ≤ ( ( 𝑌 + 𝑦 ) + 1 ) ) → ( ( ! ‘ ( 𝑋 + 𝑦 ) ) · ( ( 𝑋 + 𝑦 ) + 1 ) ) ≤ ( ( ! ‘ ( 𝑌 + 𝑦 ) ) · ( ( 𝑌 + 𝑦 ) + 1 ) ) ) ) |
104 |
102 103
|
syl |
⊢ ( ( 𝑋 ∈ ℕ0 ∧ 𝑌 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) → ( ( ( ! ‘ ( 𝑋 + 𝑦 ) ) ≤ ( ! ‘ ( 𝑌 + 𝑦 ) ) ∧ ( ( 𝑋 + 𝑦 ) + 1 ) ≤ ( ( 𝑌 + 𝑦 ) + 1 ) ) → ( ( ! ‘ ( 𝑋 + 𝑦 ) ) · ( ( 𝑋 + 𝑦 ) + 1 ) ) ≤ ( ( ! ‘ ( 𝑌 + 𝑦 ) ) · ( ( 𝑌 + 𝑦 ) + 1 ) ) ) ) |
105 |
104
|
3expa |
⊢ ( ( ( 𝑋 ∈ ℕ0 ∧ 𝑌 ∈ ℕ0 ) ∧ 𝑦 ∈ ℕ0 ) → ( ( ( ! ‘ ( 𝑋 + 𝑦 ) ) ≤ ( ! ‘ ( 𝑌 + 𝑦 ) ) ∧ ( ( 𝑋 + 𝑦 ) + 1 ) ≤ ( ( 𝑌 + 𝑦 ) + 1 ) ) → ( ( ! ‘ ( 𝑋 + 𝑦 ) ) · ( ( 𝑋 + 𝑦 ) + 1 ) ) ≤ ( ( ! ‘ ( 𝑌 + 𝑦 ) ) · ( ( 𝑌 + 𝑦 ) + 1 ) ) ) ) |
106 |
105
|
3adantl3 |
⊢ ( ( ( 𝑋 ∈ ℕ0 ∧ 𝑌 ∈ ℕ0 ∧ 𝑋 ≤ 𝑌 ) ∧ 𝑦 ∈ ℕ0 ) → ( ( ( ! ‘ ( 𝑋 + 𝑦 ) ) ≤ ( ! ‘ ( 𝑌 + 𝑦 ) ) ∧ ( ( 𝑋 + 𝑦 ) + 1 ) ≤ ( ( 𝑌 + 𝑦 ) + 1 ) ) → ( ( ! ‘ ( 𝑋 + 𝑦 ) ) · ( ( 𝑋 + 𝑦 ) + 1 ) ) ≤ ( ( ! ‘ ( 𝑌 + 𝑦 ) ) · ( ( 𝑌 + 𝑦 ) + 1 ) ) ) ) |
107 |
67 106
|
mpd |
⊢ ( ( ( 𝑋 ∈ ℕ0 ∧ 𝑌 ∈ ℕ0 ∧ 𝑋 ≤ 𝑌 ) ∧ 𝑦 ∈ ℕ0 ) → ( ( ! ‘ ( 𝑋 + 𝑦 ) ) · ( ( 𝑋 + 𝑦 ) + 1 ) ) ≤ ( ( ! ‘ ( 𝑌 + 𝑦 ) ) · ( ( 𝑌 + 𝑦 ) + 1 ) ) ) |
108 |
|
facp1 |
⊢ ( ( 𝑋 + 𝑦 ) ∈ ℕ0 → ( ! ‘ ( ( 𝑋 + 𝑦 ) + 1 ) ) = ( ( ! ‘ ( 𝑋 + 𝑦 ) ) · ( ( 𝑋 + 𝑦 ) + 1 ) ) ) |
109 |
43 108
|
syl |
⊢ ( ( ( 𝑋 ∈ ℕ0 ∧ 𝑌 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑋 ≤ 𝑌 ) → ( ! ‘ ( ( 𝑋 + 𝑦 ) + 1 ) ) = ( ( ! ‘ ( 𝑋 + 𝑦 ) ) · ( ( 𝑋 + 𝑦 ) + 1 ) ) ) |
110 |
|
facp1 |
⊢ ( ( 𝑌 + 𝑦 ) ∈ ℕ0 → ( ! ‘ ( ( 𝑌 + 𝑦 ) + 1 ) ) = ( ( ! ‘ ( 𝑌 + 𝑦 ) ) · ( ( 𝑌 + 𝑦 ) + 1 ) ) ) |
111 |
46 110
|
syl |
⊢ ( ( ( 𝑋 ∈ ℕ0 ∧ 𝑌 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑋 ≤ 𝑌 ) → ( ! ‘ ( ( 𝑌 + 𝑦 ) + 1 ) ) = ( ( ! ‘ ( 𝑌 + 𝑦 ) ) · ( ( 𝑌 + 𝑦 ) + 1 ) ) ) |
112 |
109 111
|
jca |
⊢ ( ( ( 𝑋 ∈ ℕ0 ∧ 𝑌 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑋 ≤ 𝑌 ) → ( ( ! ‘ ( ( 𝑋 + 𝑦 ) + 1 ) ) = ( ( ! ‘ ( 𝑋 + 𝑦 ) ) · ( ( 𝑋 + 𝑦 ) + 1 ) ) ∧ ( ! ‘ ( ( 𝑌 + 𝑦 ) + 1 ) ) = ( ( ! ‘ ( 𝑌 + 𝑦 ) ) · ( ( 𝑌 + 𝑦 ) + 1 ) ) ) ) |
113 |
|
breq12 |
⊢ ( ( ( ! ‘ ( ( 𝑋 + 𝑦 ) + 1 ) ) = ( ( ! ‘ ( 𝑋 + 𝑦 ) ) · ( ( 𝑋 + 𝑦 ) + 1 ) ) ∧ ( ! ‘ ( ( 𝑌 + 𝑦 ) + 1 ) ) = ( ( ! ‘ ( 𝑌 + 𝑦 ) ) · ( ( 𝑌 + 𝑦 ) + 1 ) ) ) → ( ( ! ‘ ( ( 𝑋 + 𝑦 ) + 1 ) ) ≤ ( ! ‘ ( ( 𝑌 + 𝑦 ) + 1 ) ) ↔ ( ( ! ‘ ( 𝑋 + 𝑦 ) ) · ( ( 𝑋 + 𝑦 ) + 1 ) ) ≤ ( ( ! ‘ ( 𝑌 + 𝑦 ) ) · ( ( 𝑌 + 𝑦 ) + 1 ) ) ) ) |
114 |
112 113
|
syl |
⊢ ( ( ( 𝑋 ∈ ℕ0 ∧ 𝑌 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑋 ≤ 𝑌 ) → ( ( ! ‘ ( ( 𝑋 + 𝑦 ) + 1 ) ) ≤ ( ! ‘ ( ( 𝑌 + 𝑦 ) + 1 ) ) ↔ ( ( ! ‘ ( 𝑋 + 𝑦 ) ) · ( ( 𝑋 + 𝑦 ) + 1 ) ) ≤ ( ( ! ‘ ( 𝑌 + 𝑦 ) ) · ( ( 𝑌 + 𝑦 ) + 1 ) ) ) ) |
115 |
114
|
3an1rs |
⊢ ( ( ( 𝑋 ∈ ℕ0 ∧ 𝑌 ∈ ℕ0 ∧ 𝑋 ≤ 𝑌 ) ∧ 𝑦 ∈ ℕ0 ) → ( ( ! ‘ ( ( 𝑋 + 𝑦 ) + 1 ) ) ≤ ( ! ‘ ( ( 𝑌 + 𝑦 ) + 1 ) ) ↔ ( ( ! ‘ ( 𝑋 + 𝑦 ) ) · ( ( 𝑋 + 𝑦 ) + 1 ) ) ≤ ( ( ! ‘ ( 𝑌 + 𝑦 ) ) · ( ( 𝑌 + 𝑦 ) + 1 ) ) ) ) |
116 |
107 115
|
mpbird |
⊢ ( ( ( 𝑋 ∈ ℕ0 ∧ 𝑌 ∈ ℕ0 ∧ 𝑋 ≤ 𝑌 ) ∧ 𝑦 ∈ ℕ0 ) → ( ! ‘ ( ( 𝑋 + 𝑦 ) + 1 ) ) ≤ ( ! ‘ ( ( 𝑌 + 𝑦 ) + 1 ) ) ) |
117 |
116
|
adantr |
⊢ ( ( ( ( 𝑋 ∈ ℕ0 ∧ 𝑌 ∈ ℕ0 ∧ 𝑋 ≤ 𝑌 ) ∧ 𝑦 ∈ ℕ0 ) ∧ ( ! ‘ ( 𝑋 + 𝑦 ) ) ≤ ( ! ‘ ( 𝑌 + 𝑦 ) ) ) → ( ! ‘ ( ( 𝑋 + 𝑦 ) + 1 ) ) ≤ ( ! ‘ ( ( 𝑌 + 𝑦 ) + 1 ) ) ) |
118 |
|
addass |
⊢ ( ( 𝑌 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑌 + 𝑦 ) + 1 ) = ( 𝑌 + ( 𝑦 + 1 ) ) ) |
119 |
34 118
|
mp3an3 |
⊢ ( ( 𝑌 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ( 𝑌 + 𝑦 ) + 1 ) = ( 𝑌 + ( 𝑦 + 1 ) ) ) |
120 |
27 33 119
|
syl2an |
⊢ ( ( 𝑌 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝑌 + 𝑦 ) + 1 ) = ( 𝑌 + ( 𝑦 + 1 ) ) ) |
121 |
120
|
fveq2d |
⊢ ( ( 𝑌 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) → ( ! ‘ ( ( 𝑌 + 𝑦 ) + 1 ) ) = ( ! ‘ ( 𝑌 + ( 𝑦 + 1 ) ) ) ) |
122 |
121
|
3ad2antl2 |
⊢ ( ( ( 𝑋 ∈ ℕ0 ∧ 𝑌 ∈ ℕ0 ∧ 𝑋 ≤ 𝑌 ) ∧ 𝑦 ∈ ℕ0 ) → ( ! ‘ ( ( 𝑌 + 𝑦 ) + 1 ) ) = ( ! ‘ ( 𝑌 + ( 𝑦 + 1 ) ) ) ) |
123 |
122
|
adantr |
⊢ ( ( ( ( 𝑋 ∈ ℕ0 ∧ 𝑌 ∈ ℕ0 ∧ 𝑋 ≤ 𝑌 ) ∧ 𝑦 ∈ ℕ0 ) ∧ ( ! ‘ ( 𝑋 + 𝑦 ) ) ≤ ( ! ‘ ( 𝑌 + 𝑦 ) ) ) → ( ! ‘ ( ( 𝑌 + 𝑦 ) + 1 ) ) = ( ! ‘ ( 𝑌 + ( 𝑦 + 1 ) ) ) ) |
124 |
117 123
|
breqtrd |
⊢ ( ( ( ( 𝑋 ∈ ℕ0 ∧ 𝑌 ∈ ℕ0 ∧ 𝑋 ≤ 𝑌 ) ∧ 𝑦 ∈ ℕ0 ) ∧ ( ! ‘ ( 𝑋 + 𝑦 ) ) ≤ ( ! ‘ ( 𝑌 + 𝑦 ) ) ) → ( ! ‘ ( ( 𝑋 + 𝑦 ) + 1 ) ) ≤ ( ! ‘ ( 𝑌 + ( 𝑦 + 1 ) ) ) ) |
125 |
40 124
|
eqbrtrrd |
⊢ ( ( ( ( 𝑋 ∈ ℕ0 ∧ 𝑌 ∈ ℕ0 ∧ 𝑋 ≤ 𝑌 ) ∧ 𝑦 ∈ ℕ0 ) ∧ ( ! ‘ ( 𝑋 + 𝑦 ) ) ≤ ( ! ‘ ( 𝑌 + 𝑦 ) ) ) → ( ! ‘ ( 𝑋 + ( 𝑦 + 1 ) ) ) ≤ ( ! ‘ ( 𝑌 + ( 𝑦 + 1 ) ) ) ) |
126 |
5 10 15 20 32 125
|
nn0indd |
⊢ ( ( ( 𝑋 ∈ ℕ0 ∧ 𝑌 ∈ ℕ0 ∧ 𝑋 ≤ 𝑌 ) ∧ 𝑁 ∈ ℕ0 ) → ( ! ‘ ( 𝑋 + 𝑁 ) ) ≤ ( ! ‘ ( 𝑌 + 𝑁 ) ) ) |