| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prodsplit.1 | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 2 |  | prodsplit.2 | ⊢ ( 𝜑  →  𝑁  ∈  ℤ ) | 
						
							| 3 |  | prodsplit.3 | ⊢ ( 𝜑  →  𝑀  ≤  𝑁 ) | 
						
							| 4 |  | prodsplit.4 | ⊢ ( 𝜑  →  𝐾  ∈  ℕ0 ) | 
						
							| 5 |  | prodsplit.5 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ... ( 𝑁  +  𝐾 ) ) )  →  𝐴  ∈  ℂ ) | 
						
							| 6 | 2 | zred | ⊢ ( 𝜑  →  𝑁  ∈  ℝ ) | 
						
							| 7 | 6 | ltp1d | ⊢ ( 𝜑  →  𝑁  <  ( 𝑁  +  1 ) ) | 
						
							| 8 |  | fzdisj | ⊢ ( 𝑁  <  ( 𝑁  +  1 )  →  ( ( 𝑀 ... 𝑁 )  ∩  ( ( 𝑁  +  1 ) ... ( 𝑁  +  𝐾 ) ) )  =  ∅ ) | 
						
							| 9 | 7 8 | syl | ⊢ ( 𝜑  →  ( ( 𝑀 ... 𝑁 )  ∩  ( ( 𝑁  +  1 ) ... ( 𝑁  +  𝐾 ) ) )  =  ∅ ) | 
						
							| 10 | 4 | nn0zd | ⊢ ( 𝜑  →  𝐾  ∈  ℤ ) | 
						
							| 11 | 2 10 | zaddcld | ⊢ ( 𝜑  →  ( 𝑁  +  𝐾 )  ∈  ℤ ) | 
						
							| 12 |  | nn0addge1 | ⊢ ( ( 𝑁  ∈  ℝ  ∧  𝐾  ∈  ℕ0 )  →  𝑁  ≤  ( 𝑁  +  𝐾 ) ) | 
						
							| 13 | 6 4 12 | syl2anc | ⊢ ( 𝜑  →  𝑁  ≤  ( 𝑁  +  𝐾 ) ) | 
						
							| 14 | 1 11 2 3 13 | elfzd | ⊢ ( 𝜑  →  𝑁  ∈  ( 𝑀 ... ( 𝑁  +  𝐾 ) ) ) | 
						
							| 15 |  | fzsplit | ⊢ ( 𝑁  ∈  ( 𝑀 ... ( 𝑁  +  𝐾 ) )  →  ( 𝑀 ... ( 𝑁  +  𝐾 ) )  =  ( ( 𝑀 ... 𝑁 )  ∪  ( ( 𝑁  +  1 ) ... ( 𝑁  +  𝐾 ) ) ) ) | 
						
							| 16 | 14 15 | syl | ⊢ ( 𝜑  →  ( 𝑀 ... ( 𝑁  +  𝐾 ) )  =  ( ( 𝑀 ... 𝑁 )  ∪  ( ( 𝑁  +  1 ) ... ( 𝑁  +  𝐾 ) ) ) ) | 
						
							| 17 |  | fzfid | ⊢ ( 𝜑  →  ( 𝑀 ... ( 𝑁  +  𝐾 ) )  ∈  Fin ) | 
						
							| 18 | 9 16 17 5 | fprodsplit | ⊢ ( 𝜑  →  ∏ 𝑘  ∈  ( 𝑀 ... ( 𝑁  +  𝐾 ) ) 𝐴  =  ( ∏ 𝑘  ∈  ( 𝑀 ... 𝑁 ) 𝐴  ·  ∏ 𝑘  ∈  ( ( 𝑁  +  1 ) ... ( 𝑁  +  𝐾 ) ) 𝐴 ) ) |