Metamath Proof Explorer


Theorem prodsplit

Description: Product split into two factors, original by Steven Nguyen. (Contributed by metakunt, 21-Apr-2024)

Ref Expression
Hypotheses prodsplit.1 ( 𝜑𝑀 ∈ ℤ )
prodsplit.2 ( 𝜑𝑁 ∈ ℤ )
prodsplit.3 ( 𝜑𝑀𝑁 )
prodsplit.4 ( 𝜑𝐾 ∈ ℕ0 )
prodsplit.5 ( ( 𝜑𝑘 ∈ ( 𝑀 ... ( 𝑁 + 𝐾 ) ) ) → 𝐴 ∈ ℂ )
Assertion prodsplit ( 𝜑 → ∏ 𝑘 ∈ ( 𝑀 ... ( 𝑁 + 𝐾 ) ) 𝐴 = ( ∏ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 · ∏ 𝑘 ∈ ( ( 𝑁 + 1 ) ... ( 𝑁 + 𝐾 ) ) 𝐴 ) )

Proof

Step Hyp Ref Expression
1 prodsplit.1 ( 𝜑𝑀 ∈ ℤ )
2 prodsplit.2 ( 𝜑𝑁 ∈ ℤ )
3 prodsplit.3 ( 𝜑𝑀𝑁 )
4 prodsplit.4 ( 𝜑𝐾 ∈ ℕ0 )
5 prodsplit.5 ( ( 𝜑𝑘 ∈ ( 𝑀 ... ( 𝑁 + 𝐾 ) ) ) → 𝐴 ∈ ℂ )
6 2 zred ( 𝜑𝑁 ∈ ℝ )
7 6 ltp1d ( 𝜑𝑁 < ( 𝑁 + 1 ) )
8 fzdisj ( 𝑁 < ( 𝑁 + 1 ) → ( ( 𝑀 ... 𝑁 ) ∩ ( ( 𝑁 + 1 ) ... ( 𝑁 + 𝐾 ) ) ) = ∅ )
9 7 8 syl ( 𝜑 → ( ( 𝑀 ... 𝑁 ) ∩ ( ( 𝑁 + 1 ) ... ( 𝑁 + 𝐾 ) ) ) = ∅ )
10 4 nn0zd ( 𝜑𝐾 ∈ ℤ )
11 2 10 zaddcld ( 𝜑 → ( 𝑁 + 𝐾 ) ∈ ℤ )
12 nn0addge1 ( ( 𝑁 ∈ ℝ ∧ 𝐾 ∈ ℕ0 ) → 𝑁 ≤ ( 𝑁 + 𝐾 ) )
13 6 4 12 syl2anc ( 𝜑𝑁 ≤ ( 𝑁 + 𝐾 ) )
14 1 11 2 3 13 elfzd ( 𝜑𝑁 ∈ ( 𝑀 ... ( 𝑁 + 𝐾 ) ) )
15 fzsplit ( 𝑁 ∈ ( 𝑀 ... ( 𝑁 + 𝐾 ) ) → ( 𝑀 ... ( 𝑁 + 𝐾 ) ) = ( ( 𝑀 ... 𝑁 ) ∪ ( ( 𝑁 + 1 ) ... ( 𝑁 + 𝐾 ) ) ) )
16 14 15 syl ( 𝜑 → ( 𝑀 ... ( 𝑁 + 𝐾 ) ) = ( ( 𝑀 ... 𝑁 ) ∪ ( ( 𝑁 + 1 ) ... ( 𝑁 + 𝐾 ) ) ) )
17 fzfid ( 𝜑 → ( 𝑀 ... ( 𝑁 + 𝐾 ) ) ∈ Fin )
18 9 16 17 5 fprodsplit ( 𝜑 → ∏ 𝑘 ∈ ( 𝑀 ... ( 𝑁 + 𝐾 ) ) 𝐴 = ( ∏ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 · ∏ 𝑘 ∈ ( ( 𝑁 + 1 ) ... ( 𝑁 + 𝐾 ) ) 𝐴 ) )