Step |
Hyp |
Ref |
Expression |
1 |
|
prodsplit.1 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
2 |
|
prodsplit.2 |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
3 |
|
prodsplit.3 |
⊢ ( 𝜑 → 𝑀 ≤ 𝑁 ) |
4 |
|
prodsplit.4 |
⊢ ( 𝜑 → 𝐾 ∈ ℕ0 ) |
5 |
|
prodsplit.5 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... ( 𝑁 + 𝐾 ) ) ) → 𝐴 ∈ ℂ ) |
6 |
2
|
zred |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
7 |
6
|
ltp1d |
⊢ ( 𝜑 → 𝑁 < ( 𝑁 + 1 ) ) |
8 |
|
fzdisj |
⊢ ( 𝑁 < ( 𝑁 + 1 ) → ( ( 𝑀 ... 𝑁 ) ∩ ( ( 𝑁 + 1 ) ... ( 𝑁 + 𝐾 ) ) ) = ∅ ) |
9 |
7 8
|
syl |
⊢ ( 𝜑 → ( ( 𝑀 ... 𝑁 ) ∩ ( ( 𝑁 + 1 ) ... ( 𝑁 + 𝐾 ) ) ) = ∅ ) |
10 |
4
|
nn0zd |
⊢ ( 𝜑 → 𝐾 ∈ ℤ ) |
11 |
2 10
|
zaddcld |
⊢ ( 𝜑 → ( 𝑁 + 𝐾 ) ∈ ℤ ) |
12 |
|
nn0addge1 |
⊢ ( ( 𝑁 ∈ ℝ ∧ 𝐾 ∈ ℕ0 ) → 𝑁 ≤ ( 𝑁 + 𝐾 ) ) |
13 |
6 4 12
|
syl2anc |
⊢ ( 𝜑 → 𝑁 ≤ ( 𝑁 + 𝐾 ) ) |
14 |
1 11 2 3 13
|
elfzd |
⊢ ( 𝜑 → 𝑁 ∈ ( 𝑀 ... ( 𝑁 + 𝐾 ) ) ) |
15 |
|
fzsplit |
⊢ ( 𝑁 ∈ ( 𝑀 ... ( 𝑁 + 𝐾 ) ) → ( 𝑀 ... ( 𝑁 + 𝐾 ) ) = ( ( 𝑀 ... 𝑁 ) ∪ ( ( 𝑁 + 1 ) ... ( 𝑁 + 𝐾 ) ) ) ) |
16 |
14 15
|
syl |
⊢ ( 𝜑 → ( 𝑀 ... ( 𝑁 + 𝐾 ) ) = ( ( 𝑀 ... 𝑁 ) ∪ ( ( 𝑁 + 1 ) ... ( 𝑁 + 𝐾 ) ) ) ) |
17 |
|
fzfid |
⊢ ( 𝜑 → ( 𝑀 ... ( 𝑁 + 𝐾 ) ) ∈ Fin ) |
18 |
9 16 17 5
|
fprodsplit |
⊢ ( 𝜑 → ∏ 𝑘 ∈ ( 𝑀 ... ( 𝑁 + 𝐾 ) ) 𝐴 = ( ∏ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 · ∏ 𝑘 ∈ ( ( 𝑁 + 1 ) ... ( 𝑁 + 𝐾 ) ) 𝐴 ) ) |