Metamath Proof Explorer


Theorem prodsplit

Description: Product split into two factors, original by Steven Nguyen. (Contributed by metakunt, 21-Apr-2024)

Ref Expression
Hypotheses prodsplit.1 φ M
prodsplit.2 φ N
prodsplit.3 φ M N
prodsplit.4 φ K 0
prodsplit.5 φ k M N + K A
Assertion prodsplit φ k = M N + K A = k = M N A k = N + 1 N + K A

Proof

Step Hyp Ref Expression
1 prodsplit.1 φ M
2 prodsplit.2 φ N
3 prodsplit.3 φ M N
4 prodsplit.4 φ K 0
5 prodsplit.5 φ k M N + K A
6 2 zred φ N
7 6 ltp1d φ N < N + 1
8 fzdisj N < N + 1 M N N + 1 N + K =
9 7 8 syl φ M N N + 1 N + K =
10 4 nn0zd φ K
11 2 10 zaddcld φ N + K
12 nn0addge1 N K 0 N N + K
13 6 4 12 syl2anc φ N N + K
14 1 11 2 3 13 elfzd φ N M N + K
15 fzsplit N M N + K M N + K = M N N + 1 N + K
16 14 15 syl φ M N + K = M N N + 1 N + K
17 fzfid φ M N + K Fin
18 9 16 17 5 fprodsplit φ k = M N + K A = k = M N A k = N + 1 N + K A