Metamath Proof Explorer


Theorem fac2xp3

Description: Factorial of 2x+3, sublemma for sublemma for AKS. (Contributed by metakunt, 19-Apr-2024)

Ref Expression
Assertion fac2xp3 x 0 2 x + 3 ! = 2 x + 1 ! 2 x + 2 2 x + 3

Proof

Step Hyp Ref Expression
1 2cn 2
2 nn0cn x 0 x
3 mulcl 2 x 2 x
4 1 2 3 sylancr x 0 2 x
5 ax-1cn 1
6 addass 2 x 2 1 2 x + 2 + 1 = 2 x + 2 + 1
7 1 5 6 mp3an23 2 x 2 x + 2 + 1 = 2 x + 2 + 1
8 4 7 syl x 0 2 x + 2 + 1 = 2 x + 2 + 1
9 df-3 3 = 2 + 1
10 9 a1i x 0 3 = 2 + 1
11 10 oveq2d x 0 2 x + 3 = 2 x + 2 + 1
12 8 11 eqtr4d x 0 2 x + 2 + 1 = 2 x + 3
13 12 fveq2d x 0 2 x + 2 + 1 ! = 2 x + 3 !
14 2nn0 2 0
15 nn0mulcl 2 0 x 0 2 x 0
16 14 15 mpan x 0 2 x 0
17 nn0addcl 2 x 0 2 0 2 x + 2 0
18 14 17 mpan2 2 x 0 2 x + 2 0
19 16 18 syl x 0 2 x + 2 0
20 facp1 2 x + 2 0 2 x + 2 + 1 ! = 2 x + 2 ! 2 x + 2 + 1
21 19 20 syl x 0 2 x + 2 + 1 ! = 2 x + 2 ! 2 x + 2 + 1
22 13 21 eqtr3d x 0 2 x + 3 ! = 2 x + 2 ! 2 x + 2 + 1
23 12 oveq2d x 0 2 x + 2 ! 2 x + 2 + 1 = 2 x + 2 ! 2 x + 3
24 22 23 eqtrd x 0 2 x + 3 ! = 2 x + 2 ! 2 x + 3
25 addass 2 x 1 1 2 x + 1 + 1 = 2 x + 1 + 1
26 5 5 25 mp3an23 2 x 2 x + 1 + 1 = 2 x + 1 + 1
27 4 26 syl x 0 2 x + 1 + 1 = 2 x + 1 + 1
28 df-2 2 = 1 + 1
29 28 a1i x 0 2 = 1 + 1
30 29 oveq2d x 0 2 x + 2 = 2 x + 1 + 1
31 27 30 eqtr4d x 0 2 x + 1 + 1 = 2 x + 2
32 31 fveq2d x 0 2 x + 1 + 1 ! = 2 x + 2 !
33 peano2nn0 2 x 0 2 x + 1 0
34 16 33 syl x 0 2 x + 1 0
35 facp1 2 x + 1 0 2 x + 1 + 1 ! = 2 x + 1 ! 2 x + 1 + 1
36 34 35 syl x 0 2 x + 1 + 1 ! = 2 x + 1 ! 2 x + 1 + 1
37 32 36 eqtr3d x 0 2 x + 2 ! = 2 x + 1 ! 2 x + 1 + 1
38 31 oveq2d x 0 2 x + 1 ! 2 x + 1 + 1 = 2 x + 1 ! 2 x + 2
39 37 38 eqtrd x 0 2 x + 2 ! = 2 x + 1 ! 2 x + 2
40 39 oveq1d x 0 2 x + 2 ! 2 x + 3 = 2 x + 1 ! 2 x + 2 2 x + 3
41 40 eqeq2d x 0 2 x + 3 ! = 2 x + 2 ! 2 x + 3 2 x + 3 ! = 2 x + 1 ! 2 x + 2 2 x + 3
42 24 41 mpbid x 0 2 x + 3 ! = 2 x + 1 ! 2 x + 2 2 x + 3
43 faccl 2 x + 1 0 2 x + 1 !
44 34 43 syl x 0 2 x + 1 !
45 nncn 2 x + 1 ! 2 x + 1 !
46 44 45 syl x 0 2 x + 1 !
47 addcl 2 x 2 2 x + 2
48 4 1 47 sylancl x 0 2 x + 2
49 3cn 3
50 addcl 2 x 3 2 x + 3
51 4 49 50 sylancl x 0 2 x + 3
52 mulass 2 x + 1 ! 2 x + 2 2 x + 3 2 x + 1 ! 2 x + 2 2 x + 3 = 2 x + 1 ! 2 x + 2 2 x + 3
53 46 48 51 52 syl3anc x 0 2 x + 1 ! 2 x + 2 2 x + 3 = 2 x + 1 ! 2 x + 2 2 x + 3
54 42 53 eqtrd x 0 2 x + 3 ! = 2 x + 1 ! 2 x + 2 2 x + 3