Metamath Proof Explorer
Description: Adding biconditional when antecedents are conjuncted. (Contributed by metakunt, 16-Apr-2024)
|
|
Ref |
Expression |
|
Hypotheses |
andiff.1 |
|
|
|
andiff.2 |
|
|
Assertion |
andiff |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
andiff.1 |
|
2 |
|
andiff.2 |
|
3 |
1 2
|
anim12i |
|
4 |
|
dfbi2 |
|
5 |
3 4
|
sylibr |
|