Metamath Proof Explorer


Theorem aoprssdm

Description: Domain of closure of an operation. In contrast to oprssdm , no additional property for S ( -. (/) e. S ) is required! (Contributed by Alexander van der Vekens, 26-May-2017)

Ref Expression
Hypothesis aoprssdm.1 ( ( 𝑥𝑆𝑦𝑆 ) → (( 𝑥 𝐹 𝑦 )) ∈ 𝑆 )
Assertion aoprssdm ( 𝑆 × 𝑆 ) ⊆ dom 𝐹

Proof

Step Hyp Ref Expression
1 aoprssdm.1 ( ( 𝑥𝑆𝑦𝑆 ) → (( 𝑥 𝐹 𝑦 )) ∈ 𝑆 )
2 relxp Rel ( 𝑆 × 𝑆 )
3 opelxp ( ⟨ 𝑥 , 𝑦 ⟩ ∈ ( 𝑆 × 𝑆 ) ↔ ( 𝑥𝑆𝑦𝑆 ) )
4 df-aov (( 𝑥 𝐹 𝑦 )) = ( 𝐹 ''' ⟨ 𝑥 , 𝑦 ⟩ )
5 4 1 eqeltrrid ( ( 𝑥𝑆𝑦𝑆 ) → ( 𝐹 ''' ⟨ 𝑥 , 𝑦 ⟩ ) ∈ 𝑆 )
6 afvvdm ( ( 𝐹 ''' ⟨ 𝑥 , 𝑦 ⟩ ) ∈ 𝑆 → ⟨ 𝑥 , 𝑦 ⟩ ∈ dom 𝐹 )
7 5 6 syl ( ( 𝑥𝑆𝑦𝑆 ) → ⟨ 𝑥 , 𝑦 ⟩ ∈ dom 𝐹 )
8 3 7 sylbi ( ⟨ 𝑥 , 𝑦 ⟩ ∈ ( 𝑆 × 𝑆 ) → ⟨ 𝑥 , 𝑦 ⟩ ∈ dom 𝐹 )
9 2 8 relssi ( 𝑆 × 𝑆 ) ⊆ dom 𝐹