Metamath Proof Explorer


Theorem aoprssdm

Description: Domain of closure of an operation. In contrast to oprssdm , no additional property for S ( -. (/) e. S ) is required! (Contributed by Alexander van der Vekens, 26-May-2017)

Ref Expression
Hypothesis aoprssdm.1 x S y S x F y S
Assertion aoprssdm S × S dom F

Proof

Step Hyp Ref Expression
1 aoprssdm.1 x S y S x F y S
2 relxp Rel S × S
3 opelxp x y S × S x S y S
4 df-aov x F y = F ''' x y
5 4 1 eqeltrrid x S y S F ''' x y S
6 afvvdm F ''' x y S x y dom F
7 5 6 syl x S y S x y dom F
8 3 7 sylbi x y S × S x y dom F
9 2 8 relssi S × S dom F