Metamath Proof Explorer


Theorem ndmaovcl

Description: The "closure" of an operation outside its domain, when the operation's value is a set in contrast to ndmovcl where it is required that the domain contains the empty set ( (/) e. S ). (Contributed by Alexander van der Vekens, 26-May-2017)

Ref Expression
Hypotheses ndmaov.1 domF=S×S
ndmaovcl.2 ASBSAFBS
ndmaovcl.3 AFBV
Assertion ndmaovcl AFBS

Proof

Step Hyp Ref Expression
1 ndmaov.1 domF=S×S
2 ndmaovcl.2 ASBSAFBS
3 ndmaovcl.3 AFBV
4 opelxp ABS×SASBS
5 1 eqcomi S×S=domF
6 5 eleq2i ABS×SABdomF
7 ndmaov ¬ABdomFAFB=V
8 eleq1 AFB=VAFBVVV
9 8 biimpd AFB=VAFBVVV
10 vprc ¬VV
11 10 pm2.21i VVAFBS
12 9 11 syl6com AFBVAFB=VAFBS
13 3 7 12 mpsyl ¬ABdomFAFBS
14 6 13 sylnbi ¬ABS×SAFBS
15 4 14 sylnbir ¬ASBSAFBS
16 2 15 pm2.61i AFBS