Metamath Proof Explorer


Theorem ndmaovcl

Description: The "closure" of an operation outside its domain, when the operation's value is a set in contrast to ndmovcl where it is required that the domain contains the empty set ( (/) e. S ). (Contributed by Alexander van der Vekens, 26-May-2017)

Ref Expression
Hypotheses ndmaov.1 dom F = S × S
ndmaovcl.2 A S B S A F B S
ndmaovcl.3 A F B V
Assertion ndmaovcl A F B S

Proof

Step Hyp Ref Expression
1 ndmaov.1 dom F = S × S
2 ndmaovcl.2 A S B S A F B S
3 ndmaovcl.3 A F B V
4 opelxp A B S × S A S B S
5 1 eqcomi S × S = dom F
6 5 eleq2i A B S × S A B dom F
7 ndmaov ¬ A B dom F A F B = V
8 eleq1 A F B = V A F B V V V
9 8 biimpd A F B = V A F B V V V
10 vprc ¬ V V
11 10 pm2.21i V V A F B S
12 9 11 syl6com A F B V A F B = V A F B S
13 3 7 12 mpsyl ¬ A B dom F A F B S
14 6 13 sylnbi ¬ A B S × S A F B S
15 4 14 sylnbir ¬ A S B S A F B S
16 2 15 pm2.61i A F B S