| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ndmaov.1 | ⊢ dom  𝐹  =  ( 𝑆  ×  𝑆 ) | 
						
							| 2 |  | ndmaovcl.2 | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆 )  →   (( 𝐴 𝐹 𝐵 ))   ∈  𝑆 ) | 
						
							| 3 |  | ndmaovcl.3 | ⊢  (( 𝐴 𝐹 𝐵 ))   ∈  V | 
						
							| 4 |  | opelxp | ⊢ ( 〈 𝐴 ,  𝐵 〉  ∈  ( 𝑆  ×  𝑆 )  ↔  ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆 ) ) | 
						
							| 5 | 1 | eqcomi | ⊢ ( 𝑆  ×  𝑆 )  =  dom  𝐹 | 
						
							| 6 | 5 | eleq2i | ⊢ ( 〈 𝐴 ,  𝐵 〉  ∈  ( 𝑆  ×  𝑆 )  ↔  〈 𝐴 ,  𝐵 〉  ∈  dom  𝐹 ) | 
						
							| 7 |  | ndmaov | ⊢ ( ¬  〈 𝐴 ,  𝐵 〉  ∈  dom  𝐹  →   (( 𝐴 𝐹 𝐵 ))   =  V ) | 
						
							| 8 |  | eleq1 | ⊢ (  (( 𝐴 𝐹 𝐵 ))   =  V  →  (  (( 𝐴 𝐹 𝐵 ))   ∈  V  ↔  V  ∈  V ) ) | 
						
							| 9 | 8 | biimpd | ⊢ (  (( 𝐴 𝐹 𝐵 ))   =  V  →  (  (( 𝐴 𝐹 𝐵 ))   ∈  V  →  V  ∈  V ) ) | 
						
							| 10 |  | vprc | ⊢ ¬  V  ∈  V | 
						
							| 11 | 10 | pm2.21i | ⊢ ( V  ∈  V  →   (( 𝐴 𝐹 𝐵 ))   ∈  𝑆 ) | 
						
							| 12 | 9 11 | syl6com | ⊢ (  (( 𝐴 𝐹 𝐵 ))   ∈  V  →  (  (( 𝐴 𝐹 𝐵 ))   =  V  →   (( 𝐴 𝐹 𝐵 ))   ∈  𝑆 ) ) | 
						
							| 13 | 3 7 12 | mpsyl | ⊢ ( ¬  〈 𝐴 ,  𝐵 〉  ∈  dom  𝐹  →   (( 𝐴 𝐹 𝐵 ))   ∈  𝑆 ) | 
						
							| 14 | 6 13 | sylnbi | ⊢ ( ¬  〈 𝐴 ,  𝐵 〉  ∈  ( 𝑆  ×  𝑆 )  →   (( 𝐴 𝐹 𝐵 ))   ∈  𝑆 ) | 
						
							| 15 | 4 14 | sylnbir | ⊢ ( ¬  ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆 )  →   (( 𝐴 𝐹 𝐵 ))   ∈  𝑆 ) | 
						
							| 16 | 2 15 | pm2.61i | ⊢  (( 𝐴 𝐹 𝐵 ))   ∈  𝑆 |