Metamath Proof Explorer


Theorem ndmaovcl

Description: The "closure" of an operation outside its domain, when the operation's value is a set in contrast to ndmovcl where it is required that the domain contains the empty set ( (/) e. S ). (Contributed by Alexander van der Vekens, 26-May-2017)

Ref Expression
Hypotheses ndmaov.1
|- dom F = ( S X. S )
ndmaovcl.2
|- ( ( A e. S /\ B e. S ) -> (( A F B )) e. S )
ndmaovcl.3
|- (( A F B )) e. _V
Assertion ndmaovcl
|- (( A F B )) e. S

Proof

Step Hyp Ref Expression
1 ndmaov.1
 |-  dom F = ( S X. S )
2 ndmaovcl.2
 |-  ( ( A e. S /\ B e. S ) -> (( A F B )) e. S )
3 ndmaovcl.3
 |-  (( A F B )) e. _V
4 opelxp
 |-  ( <. A , B >. e. ( S X. S ) <-> ( A e. S /\ B e. S ) )
5 1 eqcomi
 |-  ( S X. S ) = dom F
6 5 eleq2i
 |-  ( <. A , B >. e. ( S X. S ) <-> <. A , B >. e. dom F )
7 ndmaov
 |-  ( -. <. A , B >. e. dom F -> (( A F B )) = _V )
8 eleq1
 |-  ( (( A F B )) = _V -> ( (( A F B )) e. _V <-> _V e. _V ) )
9 8 biimpd
 |-  ( (( A F B )) = _V -> ( (( A F B )) e. _V -> _V e. _V ) )
10 vprc
 |-  -. _V e. _V
11 10 pm2.21i
 |-  ( _V e. _V -> (( A F B )) e. S )
12 9 11 syl6com
 |-  ( (( A F B )) e. _V -> ( (( A F B )) = _V -> (( A F B )) e. S ) )
13 3 7 12 mpsyl
 |-  ( -. <. A , B >. e. dom F -> (( A F B )) e. S )
14 6 13 sylnbi
 |-  ( -. <. A , B >. e. ( S X. S ) -> (( A F B )) e. S )
15 4 14 sylnbir
 |-  ( -. ( A e. S /\ B e. S ) -> (( A F B )) e. S )
16 2 15 pm2.61i
 |-  (( A F B )) e. S