| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ndmaov.1 |
|- dom F = ( S X. S ) |
| 2 |
|
ndmaovcl.2 |
|- ( ( A e. S /\ B e. S ) -> (( A F B )) e. S ) |
| 3 |
|
ndmaovcl.3 |
|- (( A F B )) e. _V |
| 4 |
|
opelxp |
|- ( <. A , B >. e. ( S X. S ) <-> ( A e. S /\ B e. S ) ) |
| 5 |
1
|
eqcomi |
|- ( S X. S ) = dom F |
| 6 |
5
|
eleq2i |
|- ( <. A , B >. e. ( S X. S ) <-> <. A , B >. e. dom F ) |
| 7 |
|
ndmaov |
|- ( -. <. A , B >. e. dom F -> (( A F B )) = _V ) |
| 8 |
|
eleq1 |
|- ( (( A F B )) = _V -> ( (( A F B )) e. _V <-> _V e. _V ) ) |
| 9 |
8
|
biimpd |
|- ( (( A F B )) = _V -> ( (( A F B )) e. _V -> _V e. _V ) ) |
| 10 |
|
vprc |
|- -. _V e. _V |
| 11 |
10
|
pm2.21i |
|- ( _V e. _V -> (( A F B )) e. S ) |
| 12 |
9 11
|
syl6com |
|- ( (( A F B )) e. _V -> ( (( A F B )) = _V -> (( A F B )) e. S ) ) |
| 13 |
3 7 12
|
mpsyl |
|- ( -. <. A , B >. e. dom F -> (( A F B )) e. S ) |
| 14 |
6 13
|
sylnbi |
|- ( -. <. A , B >. e. ( S X. S ) -> (( A F B )) e. S ) |
| 15 |
4 14
|
sylnbir |
|- ( -. ( A e. S /\ B e. S ) -> (( A F B )) e. S ) |
| 16 |
2 15
|
pm2.61i |
|- (( A F B )) e. S |