| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ndmaov.1 |  |-  dom F = ( S X. S ) | 
						
							| 2 |  | ndmaovcl.2 |  |-  ( ( A e. S /\ B e. S ) -> (( A F B )) e. S ) | 
						
							| 3 |  | ndmaovcl.3 |  |-  (( A F B )) e. _V | 
						
							| 4 |  | opelxp |  |-  ( <. A , B >. e. ( S X. S ) <-> ( A e. S /\ B e. S ) ) | 
						
							| 5 | 1 | eqcomi |  |-  ( S X. S ) = dom F | 
						
							| 6 | 5 | eleq2i |  |-  ( <. A , B >. e. ( S X. S ) <-> <. A , B >. e. dom F ) | 
						
							| 7 |  | ndmaov |  |-  ( -. <. A , B >. e. dom F -> (( A F B )) = _V ) | 
						
							| 8 |  | eleq1 |  |-  ( (( A F B )) = _V -> ( (( A F B )) e. _V <-> _V e. _V ) ) | 
						
							| 9 | 8 | biimpd |  |-  ( (( A F B )) = _V -> ( (( A F B )) e. _V -> _V e. _V ) ) | 
						
							| 10 |  | vprc |  |-  -. _V e. _V | 
						
							| 11 | 10 | pm2.21i |  |-  ( _V e. _V -> (( A F B )) e. S ) | 
						
							| 12 | 9 11 | syl6com |  |-  ( (( A F B )) e. _V -> ( (( A F B )) = _V -> (( A F B )) e. S ) ) | 
						
							| 13 | 3 7 12 | mpsyl |  |-  ( -. <. A , B >. e. dom F -> (( A F B )) e. S ) | 
						
							| 14 | 6 13 | sylnbi |  |-  ( -. <. A , B >. e. ( S X. S ) -> (( A F B )) e. S ) | 
						
							| 15 | 4 14 | sylnbir |  |-  ( -. ( A e. S /\ B e. S ) -> (( A F B )) e. S ) | 
						
							| 16 | 2 15 | pm2.61i |  |-  (( A F B )) e. S |