Metamath Proof Explorer


Theorem aoprssdm

Description: Domain of closure of an operation. In contrast to oprssdm , no additional property for S ( -. (/) e. S ) is required! (Contributed by Alexander van der Vekens, 26-May-2017)

Ref Expression
Hypothesis aoprssdm.1
|- ( ( x e. S /\ y e. S ) -> (( x F y )) e. S )
Assertion aoprssdm
|- ( S X. S ) C_ dom F

Proof

Step Hyp Ref Expression
1 aoprssdm.1
 |-  ( ( x e. S /\ y e. S ) -> (( x F y )) e. S )
2 relxp
 |-  Rel ( S X. S )
3 opelxp
 |-  ( <. x , y >. e. ( S X. S ) <-> ( x e. S /\ y e. S ) )
4 df-aov
 |-  (( x F y )) = ( F ''' <. x , y >. )
5 4 1 eqeltrrid
 |-  ( ( x e. S /\ y e. S ) -> ( F ''' <. x , y >. ) e. S )
6 afvvdm
 |-  ( ( F ''' <. x , y >. ) e. S -> <. x , y >. e. dom F )
7 5 6 syl
 |-  ( ( x e. S /\ y e. S ) -> <. x , y >. e. dom F )
8 3 7 sylbi
 |-  ( <. x , y >. e. ( S X. S ) -> <. x , y >. e. dom F )
9 2 8 relssi
 |-  ( S X. S ) C_ dom F