| Step |
Hyp |
Ref |
Expression |
| 1 |
|
aoprssdm.1 |
|- ( ( x e. S /\ y e. S ) -> (( x F y )) e. S ) |
| 2 |
|
relxp |
|- Rel ( S X. S ) |
| 3 |
|
opelxp |
|- ( <. x , y >. e. ( S X. S ) <-> ( x e. S /\ y e. S ) ) |
| 4 |
|
df-aov |
|- (( x F y )) = ( F ''' <. x , y >. ) |
| 5 |
4 1
|
eqeltrrid |
|- ( ( x e. S /\ y e. S ) -> ( F ''' <. x , y >. ) e. S ) |
| 6 |
|
afvvdm |
|- ( ( F ''' <. x , y >. ) e. S -> <. x , y >. e. dom F ) |
| 7 |
5 6
|
syl |
|- ( ( x e. S /\ y e. S ) -> <. x , y >. e. dom F ) |
| 8 |
3 7
|
sylbi |
|- ( <. x , y >. e. ( S X. S ) -> <. x , y >. e. dom F ) |
| 9 |
2 8
|
relssi |
|- ( S X. S ) C_ dom F |