| Step |
Hyp |
Ref |
Expression |
| 1 |
|
atansopn.d |
⊢ 𝐷 = ( ℂ ∖ ( -∞ (,] 0 ) ) |
| 2 |
|
atansopn.s |
⊢ 𝑆 = { 𝑦 ∈ ℂ ∣ ( 1 + ( 𝑦 ↑ 2 ) ) ∈ 𝐷 } |
| 3 |
|
eqid |
⊢ ( 𝑦 ∈ ℂ ↦ ( 1 + ( 𝑦 ↑ 2 ) ) ) = ( 𝑦 ∈ ℂ ↦ ( 1 + ( 𝑦 ↑ 2 ) ) ) |
| 4 |
3
|
mptpreima |
⊢ ( ◡ ( 𝑦 ∈ ℂ ↦ ( 1 + ( 𝑦 ↑ 2 ) ) ) “ 𝐷 ) = { 𝑦 ∈ ℂ ∣ ( 1 + ( 𝑦 ↑ 2 ) ) ∈ 𝐷 } |
| 5 |
2 4
|
eqtr4i |
⊢ 𝑆 = ( ◡ ( 𝑦 ∈ ℂ ↦ ( 1 + ( 𝑦 ↑ 2 ) ) ) “ 𝐷 ) |
| 6 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
| 7 |
6
|
cnfldtopon |
⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
| 8 |
7
|
a1i |
⊢ ( ⊤ → ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ) |
| 9 |
|
1cnd |
⊢ ( ⊤ → 1 ∈ ℂ ) |
| 10 |
8 8 9
|
cnmptc |
⊢ ( ⊤ → ( 𝑦 ∈ ℂ ↦ 1 ) ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 11 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
| 12 |
6
|
expcn |
⊢ ( 2 ∈ ℕ0 → ( 𝑦 ∈ ℂ ↦ ( 𝑦 ↑ 2 ) ) ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 13 |
11 12
|
mp1i |
⊢ ( ⊤ → ( 𝑦 ∈ ℂ ↦ ( 𝑦 ↑ 2 ) ) ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 14 |
6
|
addcn |
⊢ + ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) |
| 15 |
14
|
a1i |
⊢ ( ⊤ → + ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 16 |
8 10 13 15
|
cnmpt12f |
⊢ ( ⊤ → ( 𝑦 ∈ ℂ ↦ ( 1 + ( 𝑦 ↑ 2 ) ) ) ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 17 |
16
|
mptru |
⊢ ( 𝑦 ∈ ℂ ↦ ( 1 + ( 𝑦 ↑ 2 ) ) ) ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) |
| 18 |
1
|
logdmopn |
⊢ 𝐷 ∈ ( TopOpen ‘ ℂfld ) |
| 19 |
|
cnima |
⊢ ( ( ( 𝑦 ∈ ℂ ↦ ( 1 + ( 𝑦 ↑ 2 ) ) ) ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) ∧ 𝐷 ∈ ( TopOpen ‘ ℂfld ) ) → ( ◡ ( 𝑦 ∈ ℂ ↦ ( 1 + ( 𝑦 ↑ 2 ) ) ) “ 𝐷 ) ∈ ( TopOpen ‘ ℂfld ) ) |
| 20 |
17 18 19
|
mp2an |
⊢ ( ◡ ( 𝑦 ∈ ℂ ↦ ( 1 + ( 𝑦 ↑ 2 ) ) ) “ 𝐷 ) ∈ ( TopOpen ‘ ℂfld ) |
| 21 |
5 20
|
eqeltri |
⊢ 𝑆 ∈ ( TopOpen ‘ ℂfld ) |