Metamath Proof Explorer


Theorem atbiffatnnbalt

Description: If a implies b, then a implies not not b. (Contributed by Jarvin Udandy, 29-Aug-2016)

Ref Expression
Assertion atbiffatnnbalt ( ( 𝜑𝜓 ) → ( 𝜑 → ¬ ¬ 𝜓 ) )

Proof

Step Hyp Ref Expression
1 atbiffatnnb ( ( 𝜑𝜓 ) → ( 𝜑 → ¬ ¬ 𝜓 ) )