Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Jarvin Udandy
atbiffatnnbalt
Next ⟩
abnotbtaxb
Metamath Proof Explorer
Ascii
Structured
Theorem
atbiffatnnbalt
Description:
If a implies b, then a implies not not b.
(Contributed by
Jarvin Udandy
, 29-Aug-2016)
Ref
Expression
Assertion
atbiffatnnbalt
⊢
( (
𝜑
→
𝜓
) → (
𝜑
→ ¬ ¬
𝜓
) )
Proof
Step
Hyp
Ref
Expression
1
atbiffatnnb
⊢
( (
𝜑
→
𝜓
) → (
𝜑
→ ¬ ¬
𝜓
) )