Step |
Hyp |
Ref |
Expression |
1 |
|
equvinv |
⊢ ( 𝑦 = 𝑧 ↔ ∃ 𝑤 ( 𝑤 = 𝑦 ∧ 𝑤 = 𝑧 ) ) |
2 |
|
ax13lem1 |
⊢ ( ¬ 𝑥 = 𝑦 → ( 𝑤 = 𝑦 → ∀ 𝑥 𝑤 = 𝑦 ) ) |
3 |
2
|
imp |
⊢ ( ( ¬ 𝑥 = 𝑦 ∧ 𝑤 = 𝑦 ) → ∀ 𝑥 𝑤 = 𝑦 ) |
4 |
|
ax13lem1 |
⊢ ( ¬ 𝑥 = 𝑧 → ( 𝑤 = 𝑧 → ∀ 𝑥 𝑤 = 𝑧 ) ) |
5 |
4
|
imp |
⊢ ( ( ¬ 𝑥 = 𝑧 ∧ 𝑤 = 𝑧 ) → ∀ 𝑥 𝑤 = 𝑧 ) |
6 |
|
ax7v1 |
⊢ ( 𝑤 = 𝑦 → ( 𝑤 = 𝑧 → 𝑦 = 𝑧 ) ) |
7 |
6
|
imp |
⊢ ( ( 𝑤 = 𝑦 ∧ 𝑤 = 𝑧 ) → 𝑦 = 𝑧 ) |
8 |
7
|
alanimi |
⊢ ( ( ∀ 𝑥 𝑤 = 𝑦 ∧ ∀ 𝑥 𝑤 = 𝑧 ) → ∀ 𝑥 𝑦 = 𝑧 ) |
9 |
3 5 8
|
syl2an |
⊢ ( ( ( ¬ 𝑥 = 𝑦 ∧ 𝑤 = 𝑦 ) ∧ ( ¬ 𝑥 = 𝑧 ∧ 𝑤 = 𝑧 ) ) → ∀ 𝑥 𝑦 = 𝑧 ) |
10 |
9
|
an4s |
⊢ ( ( ( ¬ 𝑥 = 𝑦 ∧ ¬ 𝑥 = 𝑧 ) ∧ ( 𝑤 = 𝑦 ∧ 𝑤 = 𝑧 ) ) → ∀ 𝑥 𝑦 = 𝑧 ) |
11 |
10
|
ex |
⊢ ( ( ¬ 𝑥 = 𝑦 ∧ ¬ 𝑥 = 𝑧 ) → ( ( 𝑤 = 𝑦 ∧ 𝑤 = 𝑧 ) → ∀ 𝑥 𝑦 = 𝑧 ) ) |
12 |
11
|
exlimdv |
⊢ ( ( ¬ 𝑥 = 𝑦 ∧ ¬ 𝑥 = 𝑧 ) → ( ∃ 𝑤 ( 𝑤 = 𝑦 ∧ 𝑤 = 𝑧 ) → ∀ 𝑥 𝑦 = 𝑧 ) ) |
13 |
1 12
|
syl5bi |
⊢ ( ( ¬ 𝑥 = 𝑦 ∧ ¬ 𝑥 = 𝑧 ) → ( 𝑦 = 𝑧 → ∀ 𝑥 𝑦 = 𝑧 ) ) |
14 |
13
|
ex |
⊢ ( ¬ 𝑥 = 𝑦 → ( ¬ 𝑥 = 𝑧 → ( 𝑦 = 𝑧 → ∀ 𝑥 𝑦 = 𝑧 ) ) ) |
15 |
|
ax13b |
⊢ ( ( ¬ 𝑥 = 𝑦 → ( 𝑦 = 𝑧 → ∀ 𝑥 𝑦 = 𝑧 ) ) ↔ ( ¬ 𝑥 = 𝑦 → ( ¬ 𝑥 = 𝑧 → ( 𝑦 = 𝑧 → ∀ 𝑥 𝑦 = 𝑧 ) ) ) ) |
16 |
14 15
|
mpbir |
⊢ ( ¬ 𝑥 = 𝑦 → ( 𝑦 = 𝑧 → ∀ 𝑥 𝑦 = 𝑧 ) ) |