| Step | Hyp | Ref | Expression | 
						
							| 1 |  | axccd.1 | ⊢ ( 𝜑  →  𝐴  ≈  ω ) | 
						
							| 2 |  | axccd.2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝑥  ≠  ∅ ) | 
						
							| 3 |  | encv | ⊢ ( 𝐴  ≈  ω  →  ( 𝐴  ∈  V  ∧  ω  ∈  V ) ) | 
						
							| 4 | 3 | simpld | ⊢ ( 𝐴  ≈  ω  →  𝐴  ∈  V ) | 
						
							| 5 |  | breq1 | ⊢ ( 𝑦  =  𝐴  →  ( 𝑦  ≈  ω  ↔  𝐴  ≈  ω ) ) | 
						
							| 6 |  | raleq | ⊢ ( 𝑦  =  𝐴  →  ( ∀ 𝑥  ∈  𝑦 ( 𝑥  ≠  ∅  →  ( 𝑓 ‘ 𝑥 )  ∈  𝑥 )  ↔  ∀ 𝑥  ∈  𝐴 ( 𝑥  ≠  ∅  →  ( 𝑓 ‘ 𝑥 )  ∈  𝑥 ) ) ) | 
						
							| 7 | 6 | exbidv | ⊢ ( 𝑦  =  𝐴  →  ( ∃ 𝑓 ∀ 𝑥  ∈  𝑦 ( 𝑥  ≠  ∅  →  ( 𝑓 ‘ 𝑥 )  ∈  𝑥 )  ↔  ∃ 𝑓 ∀ 𝑥  ∈  𝐴 ( 𝑥  ≠  ∅  →  ( 𝑓 ‘ 𝑥 )  ∈  𝑥 ) ) ) | 
						
							| 8 | 5 7 | imbi12d | ⊢ ( 𝑦  =  𝐴  →  ( ( 𝑦  ≈  ω  →  ∃ 𝑓 ∀ 𝑥  ∈  𝑦 ( 𝑥  ≠  ∅  →  ( 𝑓 ‘ 𝑥 )  ∈  𝑥 ) )  ↔  ( 𝐴  ≈  ω  →  ∃ 𝑓 ∀ 𝑥  ∈  𝐴 ( 𝑥  ≠  ∅  →  ( 𝑓 ‘ 𝑥 )  ∈  𝑥 ) ) ) ) | 
						
							| 9 |  | ax-cc | ⊢ ( 𝑦  ≈  ω  →  ∃ 𝑓 ∀ 𝑥  ∈  𝑦 ( 𝑥  ≠  ∅  →  ( 𝑓 ‘ 𝑥 )  ∈  𝑥 ) ) | 
						
							| 10 | 8 9 | vtoclg | ⊢ ( 𝐴  ∈  V  →  ( 𝐴  ≈  ω  →  ∃ 𝑓 ∀ 𝑥  ∈  𝐴 ( 𝑥  ≠  ∅  →  ( 𝑓 ‘ 𝑥 )  ∈  𝑥 ) ) ) | 
						
							| 11 | 1 4 10 | 3syl | ⊢ ( 𝜑  →  ( 𝐴  ≈  ω  →  ∃ 𝑓 ∀ 𝑥  ∈  𝐴 ( 𝑥  ≠  ∅  →  ( 𝑓 ‘ 𝑥 )  ∈  𝑥 ) ) ) | 
						
							| 12 | 1 11 | mpd | ⊢ ( 𝜑  →  ∃ 𝑓 ∀ 𝑥  ∈  𝐴 ( 𝑥  ≠  ∅  →  ( 𝑓 ‘ 𝑥 )  ∈  𝑥 ) ) | 
						
							| 13 |  | nfv | ⊢ Ⅎ 𝑥 𝜑 | 
						
							| 14 |  | nfra1 | ⊢ Ⅎ 𝑥 ∀ 𝑥  ∈  𝐴 ( 𝑥  ≠  ∅  →  ( 𝑓 ‘ 𝑥 )  ∈  𝑥 ) | 
						
							| 15 | 13 14 | nfan | ⊢ Ⅎ 𝑥 ( 𝜑  ∧  ∀ 𝑥  ∈  𝐴 ( 𝑥  ≠  ∅  →  ( 𝑓 ‘ 𝑥 )  ∈  𝑥 ) ) | 
						
							| 16 | 2 | adantlr | ⊢ ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝐴 ( 𝑥  ≠  ∅  →  ( 𝑓 ‘ 𝑥 )  ∈  𝑥 ) )  ∧  𝑥  ∈  𝐴 )  →  𝑥  ≠  ∅ ) | 
						
							| 17 |  | rspa | ⊢ ( ( ∀ 𝑥  ∈  𝐴 ( 𝑥  ≠  ∅  →  ( 𝑓 ‘ 𝑥 )  ∈  𝑥 )  ∧  𝑥  ∈  𝐴 )  →  ( 𝑥  ≠  ∅  →  ( 𝑓 ‘ 𝑥 )  ∈  𝑥 ) ) | 
						
							| 18 | 17 | adantll | ⊢ ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝐴 ( 𝑥  ≠  ∅  →  ( 𝑓 ‘ 𝑥 )  ∈  𝑥 ) )  ∧  𝑥  ∈  𝐴 )  →  ( 𝑥  ≠  ∅  →  ( 𝑓 ‘ 𝑥 )  ∈  𝑥 ) ) | 
						
							| 19 | 16 18 | mpd | ⊢ ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝐴 ( 𝑥  ≠  ∅  →  ( 𝑓 ‘ 𝑥 )  ∈  𝑥 ) )  ∧  𝑥  ∈  𝐴 )  →  ( 𝑓 ‘ 𝑥 )  ∈  𝑥 ) | 
						
							| 20 | 15 19 | ralrimia | ⊢ ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝐴 ( 𝑥  ≠  ∅  →  ( 𝑓 ‘ 𝑥 )  ∈  𝑥 ) )  →  ∀ 𝑥  ∈  𝐴 ( 𝑓 ‘ 𝑥 )  ∈  𝑥 ) | 
						
							| 21 | 20 | ex | ⊢ ( 𝜑  →  ( ∀ 𝑥  ∈  𝐴 ( 𝑥  ≠  ∅  →  ( 𝑓 ‘ 𝑥 )  ∈  𝑥 )  →  ∀ 𝑥  ∈  𝐴 ( 𝑓 ‘ 𝑥 )  ∈  𝑥 ) ) | 
						
							| 22 | 21 | eximdv | ⊢ ( 𝜑  →  ( ∃ 𝑓 ∀ 𝑥  ∈  𝐴 ( 𝑥  ≠  ∅  →  ( 𝑓 ‘ 𝑥 )  ∈  𝑥 )  →  ∃ 𝑓 ∀ 𝑥  ∈  𝐴 ( 𝑓 ‘ 𝑥 )  ∈  𝑥 ) ) | 
						
							| 23 | 12 22 | mpd | ⊢ ( 𝜑  →  ∃ 𝑓 ∀ 𝑥  ∈  𝐴 ( 𝑓 ‘ 𝑥 )  ∈  𝑥 ) |