| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dfcnqs |
⊢ ℂ = ( ( R × R ) / ◡ E ) |
| 2 |
|
addcnsrec |
⊢ ( ( ( 𝑧 ∈ R ∧ 𝑤 ∈ R ) ∧ ( 𝑣 ∈ R ∧ 𝑢 ∈ R ) ) → ( [ 〈 𝑧 , 𝑤 〉 ] ◡ E + [ 〈 𝑣 , 𝑢 〉 ] ◡ E ) = [ 〈 ( 𝑧 +R 𝑣 ) , ( 𝑤 +R 𝑢 ) 〉 ] ◡ E ) |
| 3 |
|
mulcnsrec |
⊢ ( ( ( 𝑥 ∈ R ∧ 𝑦 ∈ R ) ∧ ( ( 𝑧 +R 𝑣 ) ∈ R ∧ ( 𝑤 +R 𝑢 ) ∈ R ) ) → ( [ 〈 𝑥 , 𝑦 〉 ] ◡ E · [ 〈 ( 𝑧 +R 𝑣 ) , ( 𝑤 +R 𝑢 ) 〉 ] ◡ E ) = [ 〈 ( ( 𝑥 ·R ( 𝑧 +R 𝑣 ) ) +R ( -1R ·R ( 𝑦 ·R ( 𝑤 +R 𝑢 ) ) ) ) , ( ( 𝑦 ·R ( 𝑧 +R 𝑣 ) ) +R ( 𝑥 ·R ( 𝑤 +R 𝑢 ) ) ) 〉 ] ◡ E ) |
| 4 |
|
mulcnsrec |
⊢ ( ( ( 𝑥 ∈ R ∧ 𝑦 ∈ R ) ∧ ( 𝑧 ∈ R ∧ 𝑤 ∈ R ) ) → ( [ 〈 𝑥 , 𝑦 〉 ] ◡ E · [ 〈 𝑧 , 𝑤 〉 ] ◡ E ) = [ 〈 ( ( 𝑥 ·R 𝑧 ) +R ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ) , ( ( 𝑦 ·R 𝑧 ) +R ( 𝑥 ·R 𝑤 ) ) 〉 ] ◡ E ) |
| 5 |
|
mulcnsrec |
⊢ ( ( ( 𝑥 ∈ R ∧ 𝑦 ∈ R ) ∧ ( 𝑣 ∈ R ∧ 𝑢 ∈ R ) ) → ( [ 〈 𝑥 , 𝑦 〉 ] ◡ E · [ 〈 𝑣 , 𝑢 〉 ] ◡ E ) = [ 〈 ( ( 𝑥 ·R 𝑣 ) +R ( -1R ·R ( 𝑦 ·R 𝑢 ) ) ) , ( ( 𝑦 ·R 𝑣 ) +R ( 𝑥 ·R 𝑢 ) ) 〉 ] ◡ E ) |
| 6 |
|
addcnsrec |
⊢ ( ( ( ( ( 𝑥 ·R 𝑧 ) +R ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ) ∈ R ∧ ( ( 𝑦 ·R 𝑧 ) +R ( 𝑥 ·R 𝑤 ) ) ∈ R ) ∧ ( ( ( 𝑥 ·R 𝑣 ) +R ( -1R ·R ( 𝑦 ·R 𝑢 ) ) ) ∈ R ∧ ( ( 𝑦 ·R 𝑣 ) +R ( 𝑥 ·R 𝑢 ) ) ∈ R ) ) → ( [ 〈 ( ( 𝑥 ·R 𝑧 ) +R ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ) , ( ( 𝑦 ·R 𝑧 ) +R ( 𝑥 ·R 𝑤 ) ) 〉 ] ◡ E + [ 〈 ( ( 𝑥 ·R 𝑣 ) +R ( -1R ·R ( 𝑦 ·R 𝑢 ) ) ) , ( ( 𝑦 ·R 𝑣 ) +R ( 𝑥 ·R 𝑢 ) ) 〉 ] ◡ E ) = [ 〈 ( ( ( 𝑥 ·R 𝑧 ) +R ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ) +R ( ( 𝑥 ·R 𝑣 ) +R ( -1R ·R ( 𝑦 ·R 𝑢 ) ) ) ) , ( ( ( 𝑦 ·R 𝑧 ) +R ( 𝑥 ·R 𝑤 ) ) +R ( ( 𝑦 ·R 𝑣 ) +R ( 𝑥 ·R 𝑢 ) ) ) 〉 ] ◡ E ) |
| 7 |
|
addclsr |
⊢ ( ( 𝑧 ∈ R ∧ 𝑣 ∈ R ) → ( 𝑧 +R 𝑣 ) ∈ R ) |
| 8 |
|
addclsr |
⊢ ( ( 𝑤 ∈ R ∧ 𝑢 ∈ R ) → ( 𝑤 +R 𝑢 ) ∈ R ) |
| 9 |
7 8
|
anim12i |
⊢ ( ( ( 𝑧 ∈ R ∧ 𝑣 ∈ R ) ∧ ( 𝑤 ∈ R ∧ 𝑢 ∈ R ) ) → ( ( 𝑧 +R 𝑣 ) ∈ R ∧ ( 𝑤 +R 𝑢 ) ∈ R ) ) |
| 10 |
9
|
an4s |
⊢ ( ( ( 𝑧 ∈ R ∧ 𝑤 ∈ R ) ∧ ( 𝑣 ∈ R ∧ 𝑢 ∈ R ) ) → ( ( 𝑧 +R 𝑣 ) ∈ R ∧ ( 𝑤 +R 𝑢 ) ∈ R ) ) |
| 11 |
|
mulclsr |
⊢ ( ( 𝑥 ∈ R ∧ 𝑧 ∈ R ) → ( 𝑥 ·R 𝑧 ) ∈ R ) |
| 12 |
|
m1r |
⊢ -1R ∈ R |
| 13 |
|
mulclsr |
⊢ ( ( 𝑦 ∈ R ∧ 𝑤 ∈ R ) → ( 𝑦 ·R 𝑤 ) ∈ R ) |
| 14 |
|
mulclsr |
⊢ ( ( -1R ∈ R ∧ ( 𝑦 ·R 𝑤 ) ∈ R ) → ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ∈ R ) |
| 15 |
12 13 14
|
sylancr |
⊢ ( ( 𝑦 ∈ R ∧ 𝑤 ∈ R ) → ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ∈ R ) |
| 16 |
|
addclsr |
⊢ ( ( ( 𝑥 ·R 𝑧 ) ∈ R ∧ ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ∈ R ) → ( ( 𝑥 ·R 𝑧 ) +R ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ) ∈ R ) |
| 17 |
11 15 16
|
syl2an |
⊢ ( ( ( 𝑥 ∈ R ∧ 𝑧 ∈ R ) ∧ ( 𝑦 ∈ R ∧ 𝑤 ∈ R ) ) → ( ( 𝑥 ·R 𝑧 ) +R ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ) ∈ R ) |
| 18 |
17
|
an4s |
⊢ ( ( ( 𝑥 ∈ R ∧ 𝑦 ∈ R ) ∧ ( 𝑧 ∈ R ∧ 𝑤 ∈ R ) ) → ( ( 𝑥 ·R 𝑧 ) +R ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ) ∈ R ) |
| 19 |
|
mulclsr |
⊢ ( ( 𝑦 ∈ R ∧ 𝑧 ∈ R ) → ( 𝑦 ·R 𝑧 ) ∈ R ) |
| 20 |
|
mulclsr |
⊢ ( ( 𝑥 ∈ R ∧ 𝑤 ∈ R ) → ( 𝑥 ·R 𝑤 ) ∈ R ) |
| 21 |
|
addclsr |
⊢ ( ( ( 𝑦 ·R 𝑧 ) ∈ R ∧ ( 𝑥 ·R 𝑤 ) ∈ R ) → ( ( 𝑦 ·R 𝑧 ) +R ( 𝑥 ·R 𝑤 ) ) ∈ R ) |
| 22 |
19 20 21
|
syl2anr |
⊢ ( ( ( 𝑥 ∈ R ∧ 𝑤 ∈ R ) ∧ ( 𝑦 ∈ R ∧ 𝑧 ∈ R ) ) → ( ( 𝑦 ·R 𝑧 ) +R ( 𝑥 ·R 𝑤 ) ) ∈ R ) |
| 23 |
22
|
an42s |
⊢ ( ( ( 𝑥 ∈ R ∧ 𝑦 ∈ R ) ∧ ( 𝑧 ∈ R ∧ 𝑤 ∈ R ) ) → ( ( 𝑦 ·R 𝑧 ) +R ( 𝑥 ·R 𝑤 ) ) ∈ R ) |
| 24 |
18 23
|
jca |
⊢ ( ( ( 𝑥 ∈ R ∧ 𝑦 ∈ R ) ∧ ( 𝑧 ∈ R ∧ 𝑤 ∈ R ) ) → ( ( ( 𝑥 ·R 𝑧 ) +R ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ) ∈ R ∧ ( ( 𝑦 ·R 𝑧 ) +R ( 𝑥 ·R 𝑤 ) ) ∈ R ) ) |
| 25 |
|
mulclsr |
⊢ ( ( 𝑥 ∈ R ∧ 𝑣 ∈ R ) → ( 𝑥 ·R 𝑣 ) ∈ R ) |
| 26 |
|
mulclsr |
⊢ ( ( 𝑦 ∈ R ∧ 𝑢 ∈ R ) → ( 𝑦 ·R 𝑢 ) ∈ R ) |
| 27 |
|
mulclsr |
⊢ ( ( -1R ∈ R ∧ ( 𝑦 ·R 𝑢 ) ∈ R ) → ( -1R ·R ( 𝑦 ·R 𝑢 ) ) ∈ R ) |
| 28 |
12 26 27
|
sylancr |
⊢ ( ( 𝑦 ∈ R ∧ 𝑢 ∈ R ) → ( -1R ·R ( 𝑦 ·R 𝑢 ) ) ∈ R ) |
| 29 |
|
addclsr |
⊢ ( ( ( 𝑥 ·R 𝑣 ) ∈ R ∧ ( -1R ·R ( 𝑦 ·R 𝑢 ) ) ∈ R ) → ( ( 𝑥 ·R 𝑣 ) +R ( -1R ·R ( 𝑦 ·R 𝑢 ) ) ) ∈ R ) |
| 30 |
25 28 29
|
syl2an |
⊢ ( ( ( 𝑥 ∈ R ∧ 𝑣 ∈ R ) ∧ ( 𝑦 ∈ R ∧ 𝑢 ∈ R ) ) → ( ( 𝑥 ·R 𝑣 ) +R ( -1R ·R ( 𝑦 ·R 𝑢 ) ) ) ∈ R ) |
| 31 |
30
|
an4s |
⊢ ( ( ( 𝑥 ∈ R ∧ 𝑦 ∈ R ) ∧ ( 𝑣 ∈ R ∧ 𝑢 ∈ R ) ) → ( ( 𝑥 ·R 𝑣 ) +R ( -1R ·R ( 𝑦 ·R 𝑢 ) ) ) ∈ R ) |
| 32 |
|
mulclsr |
⊢ ( ( 𝑦 ∈ R ∧ 𝑣 ∈ R ) → ( 𝑦 ·R 𝑣 ) ∈ R ) |
| 33 |
|
mulclsr |
⊢ ( ( 𝑥 ∈ R ∧ 𝑢 ∈ R ) → ( 𝑥 ·R 𝑢 ) ∈ R ) |
| 34 |
|
addclsr |
⊢ ( ( ( 𝑦 ·R 𝑣 ) ∈ R ∧ ( 𝑥 ·R 𝑢 ) ∈ R ) → ( ( 𝑦 ·R 𝑣 ) +R ( 𝑥 ·R 𝑢 ) ) ∈ R ) |
| 35 |
32 33 34
|
syl2anr |
⊢ ( ( ( 𝑥 ∈ R ∧ 𝑢 ∈ R ) ∧ ( 𝑦 ∈ R ∧ 𝑣 ∈ R ) ) → ( ( 𝑦 ·R 𝑣 ) +R ( 𝑥 ·R 𝑢 ) ) ∈ R ) |
| 36 |
35
|
an42s |
⊢ ( ( ( 𝑥 ∈ R ∧ 𝑦 ∈ R ) ∧ ( 𝑣 ∈ R ∧ 𝑢 ∈ R ) ) → ( ( 𝑦 ·R 𝑣 ) +R ( 𝑥 ·R 𝑢 ) ) ∈ R ) |
| 37 |
31 36
|
jca |
⊢ ( ( ( 𝑥 ∈ R ∧ 𝑦 ∈ R ) ∧ ( 𝑣 ∈ R ∧ 𝑢 ∈ R ) ) → ( ( ( 𝑥 ·R 𝑣 ) +R ( -1R ·R ( 𝑦 ·R 𝑢 ) ) ) ∈ R ∧ ( ( 𝑦 ·R 𝑣 ) +R ( 𝑥 ·R 𝑢 ) ) ∈ R ) ) |
| 38 |
|
distrsr |
⊢ ( 𝑥 ·R ( 𝑧 +R 𝑣 ) ) = ( ( 𝑥 ·R 𝑧 ) +R ( 𝑥 ·R 𝑣 ) ) |
| 39 |
|
distrsr |
⊢ ( 𝑦 ·R ( 𝑤 +R 𝑢 ) ) = ( ( 𝑦 ·R 𝑤 ) +R ( 𝑦 ·R 𝑢 ) ) |
| 40 |
39
|
oveq2i |
⊢ ( -1R ·R ( 𝑦 ·R ( 𝑤 +R 𝑢 ) ) ) = ( -1R ·R ( ( 𝑦 ·R 𝑤 ) +R ( 𝑦 ·R 𝑢 ) ) ) |
| 41 |
|
distrsr |
⊢ ( -1R ·R ( ( 𝑦 ·R 𝑤 ) +R ( 𝑦 ·R 𝑢 ) ) ) = ( ( -1R ·R ( 𝑦 ·R 𝑤 ) ) +R ( -1R ·R ( 𝑦 ·R 𝑢 ) ) ) |
| 42 |
40 41
|
eqtri |
⊢ ( -1R ·R ( 𝑦 ·R ( 𝑤 +R 𝑢 ) ) ) = ( ( -1R ·R ( 𝑦 ·R 𝑤 ) ) +R ( -1R ·R ( 𝑦 ·R 𝑢 ) ) ) |
| 43 |
38 42
|
oveq12i |
⊢ ( ( 𝑥 ·R ( 𝑧 +R 𝑣 ) ) +R ( -1R ·R ( 𝑦 ·R ( 𝑤 +R 𝑢 ) ) ) ) = ( ( ( 𝑥 ·R 𝑧 ) +R ( 𝑥 ·R 𝑣 ) ) +R ( ( -1R ·R ( 𝑦 ·R 𝑤 ) ) +R ( -1R ·R ( 𝑦 ·R 𝑢 ) ) ) ) |
| 44 |
|
ovex |
⊢ ( 𝑥 ·R 𝑧 ) ∈ V |
| 45 |
|
ovex |
⊢ ( 𝑥 ·R 𝑣 ) ∈ V |
| 46 |
|
ovex |
⊢ ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ∈ V |
| 47 |
|
addcomsr |
⊢ ( 𝑓 +R 𝑔 ) = ( 𝑔 +R 𝑓 ) |
| 48 |
|
addasssr |
⊢ ( ( 𝑓 +R 𝑔 ) +R ℎ ) = ( 𝑓 +R ( 𝑔 +R ℎ ) ) |
| 49 |
|
ovex |
⊢ ( -1R ·R ( 𝑦 ·R 𝑢 ) ) ∈ V |
| 50 |
44 45 46 47 48 49
|
caov4 |
⊢ ( ( ( 𝑥 ·R 𝑧 ) +R ( 𝑥 ·R 𝑣 ) ) +R ( ( -1R ·R ( 𝑦 ·R 𝑤 ) ) +R ( -1R ·R ( 𝑦 ·R 𝑢 ) ) ) ) = ( ( ( 𝑥 ·R 𝑧 ) +R ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ) +R ( ( 𝑥 ·R 𝑣 ) +R ( -1R ·R ( 𝑦 ·R 𝑢 ) ) ) ) |
| 51 |
43 50
|
eqtri |
⊢ ( ( 𝑥 ·R ( 𝑧 +R 𝑣 ) ) +R ( -1R ·R ( 𝑦 ·R ( 𝑤 +R 𝑢 ) ) ) ) = ( ( ( 𝑥 ·R 𝑧 ) +R ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ) +R ( ( 𝑥 ·R 𝑣 ) +R ( -1R ·R ( 𝑦 ·R 𝑢 ) ) ) ) |
| 52 |
|
distrsr |
⊢ ( 𝑦 ·R ( 𝑧 +R 𝑣 ) ) = ( ( 𝑦 ·R 𝑧 ) +R ( 𝑦 ·R 𝑣 ) ) |
| 53 |
|
distrsr |
⊢ ( 𝑥 ·R ( 𝑤 +R 𝑢 ) ) = ( ( 𝑥 ·R 𝑤 ) +R ( 𝑥 ·R 𝑢 ) ) |
| 54 |
52 53
|
oveq12i |
⊢ ( ( 𝑦 ·R ( 𝑧 +R 𝑣 ) ) +R ( 𝑥 ·R ( 𝑤 +R 𝑢 ) ) ) = ( ( ( 𝑦 ·R 𝑧 ) +R ( 𝑦 ·R 𝑣 ) ) +R ( ( 𝑥 ·R 𝑤 ) +R ( 𝑥 ·R 𝑢 ) ) ) |
| 55 |
|
ovex |
⊢ ( 𝑦 ·R 𝑧 ) ∈ V |
| 56 |
|
ovex |
⊢ ( 𝑦 ·R 𝑣 ) ∈ V |
| 57 |
|
ovex |
⊢ ( 𝑥 ·R 𝑤 ) ∈ V |
| 58 |
|
ovex |
⊢ ( 𝑥 ·R 𝑢 ) ∈ V |
| 59 |
55 56 57 47 48 58
|
caov4 |
⊢ ( ( ( 𝑦 ·R 𝑧 ) +R ( 𝑦 ·R 𝑣 ) ) +R ( ( 𝑥 ·R 𝑤 ) +R ( 𝑥 ·R 𝑢 ) ) ) = ( ( ( 𝑦 ·R 𝑧 ) +R ( 𝑥 ·R 𝑤 ) ) +R ( ( 𝑦 ·R 𝑣 ) +R ( 𝑥 ·R 𝑢 ) ) ) |
| 60 |
54 59
|
eqtri |
⊢ ( ( 𝑦 ·R ( 𝑧 +R 𝑣 ) ) +R ( 𝑥 ·R ( 𝑤 +R 𝑢 ) ) ) = ( ( ( 𝑦 ·R 𝑧 ) +R ( 𝑥 ·R 𝑤 ) ) +R ( ( 𝑦 ·R 𝑣 ) +R ( 𝑥 ·R 𝑢 ) ) ) |
| 61 |
1 2 3 4 5 6 10 24 37 51 60
|
ecovdi |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 · ( 𝐵 + 𝐶 ) ) = ( ( 𝐴 · 𝐵 ) + ( 𝐴 · 𝐶 ) ) ) |