Metamath Proof Explorer


Theorem axreg

Description: Derivation of ax-reg from ax-regs and Tarski's FOL axiom schemes. This demonstrates the sense in which ax-regs is a stronger version of ax-reg . (Contributed by BTernaryTau, 30-Dec-2025)

Ref Expression
Assertion axreg ( ∃ 𝑦 𝑦𝑥 → ∃ 𝑦 ( 𝑦𝑥 ∧ ∀ 𝑧 ( 𝑧𝑦 → ¬ 𝑧𝑥 ) ) )

Proof

Step Hyp Ref Expression
1 ax-regs ( ∃ 𝑤 𝑤𝑥 → ∃ 𝑦 ( ∀ 𝑤 ( 𝑤 = 𝑦𝑤𝑥 ) ∧ ∀ 𝑧 ( 𝑧𝑦 → ¬ ∀ 𝑤 ( 𝑤 = 𝑧𝑤𝑥 ) ) ) )
2 elequ1 ( 𝑤 = 𝑦 → ( 𝑤𝑥𝑦𝑥 ) )
3 2 cbvexvw ( ∃ 𝑤 𝑤𝑥 ↔ ∃ 𝑦 𝑦𝑥 )
4 2 equsalvw ( ∀ 𝑤 ( 𝑤 = 𝑦𝑤𝑥 ) ↔ 𝑦𝑥 )
5 elequ1 ( 𝑤 = 𝑧 → ( 𝑤𝑥𝑧𝑥 ) )
6 5 equsalvw ( ∀ 𝑤 ( 𝑤 = 𝑧𝑤𝑥 ) ↔ 𝑧𝑥 )
7 6 notbii ( ¬ ∀ 𝑤 ( 𝑤 = 𝑧𝑤𝑥 ) ↔ ¬ 𝑧𝑥 )
8 7 imbi2i ( ( 𝑧𝑦 → ¬ ∀ 𝑤 ( 𝑤 = 𝑧𝑤𝑥 ) ) ↔ ( 𝑧𝑦 → ¬ 𝑧𝑥 ) )
9 8 albii ( ∀ 𝑧 ( 𝑧𝑦 → ¬ ∀ 𝑤 ( 𝑤 = 𝑧𝑤𝑥 ) ) ↔ ∀ 𝑧 ( 𝑧𝑦 → ¬ 𝑧𝑥 ) )
10 4 9 anbi12i ( ( ∀ 𝑤 ( 𝑤 = 𝑦𝑤𝑥 ) ∧ ∀ 𝑧 ( 𝑧𝑦 → ¬ ∀ 𝑤 ( 𝑤 = 𝑧𝑤𝑥 ) ) ) ↔ ( 𝑦𝑥 ∧ ∀ 𝑧 ( 𝑧𝑦 → ¬ 𝑧𝑥 ) ) )
11 10 exbii ( ∃ 𝑦 ( ∀ 𝑤 ( 𝑤 = 𝑦𝑤𝑥 ) ∧ ∀ 𝑧 ( 𝑧𝑦 → ¬ ∀ 𝑤 ( 𝑤 = 𝑧𝑤𝑥 ) ) ) ↔ ∃ 𝑦 ( 𝑦𝑥 ∧ ∀ 𝑧 ( 𝑧𝑦 → ¬ 𝑧𝑥 ) ) )
12 1 3 11 3imtr3i ( ∃ 𝑦 𝑦𝑥 → ∃ 𝑦 ( 𝑦𝑥 ∧ ∀ 𝑧 ( 𝑧𝑦 → ¬ 𝑧𝑥 ) ) )