| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eleq1w |
⊢ ( 𝑥 = 𝑤 → ( 𝑥 ∈ 𝐴 ↔ 𝑤 ∈ 𝐴 ) ) |
| 2 |
1
|
cbvexvw |
⊢ ( ∃ 𝑥 𝑥 ∈ 𝐴 ↔ ∃ 𝑤 𝑤 ∈ 𝐴 ) |
| 3 |
|
ax-regs |
⊢ ( ∃ 𝑤 𝑤 ∈ 𝐴 → ∃ 𝑦 ( ∀ 𝑤 ( 𝑤 = 𝑦 → 𝑤 ∈ 𝐴 ) ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑦 → ¬ ∀ 𝑤 ( 𝑤 = 𝑧 → 𝑤 ∈ 𝐴 ) ) ) ) |
| 4 |
|
eleq1w |
⊢ ( 𝑤 = 𝑦 → ( 𝑤 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) |
| 5 |
4
|
equsalvw |
⊢ ( ∀ 𝑤 ( 𝑤 = 𝑦 → 𝑤 ∈ 𝐴 ) ↔ 𝑦 ∈ 𝐴 ) |
| 6 |
|
eleq1w |
⊢ ( 𝑤 = 𝑧 → ( 𝑤 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ) |
| 7 |
6
|
equsalvw |
⊢ ( ∀ 𝑤 ( 𝑤 = 𝑧 → 𝑤 ∈ 𝐴 ) ↔ 𝑧 ∈ 𝐴 ) |
| 8 |
7
|
notbii |
⊢ ( ¬ ∀ 𝑤 ( 𝑤 = 𝑧 → 𝑤 ∈ 𝐴 ) ↔ ¬ 𝑧 ∈ 𝐴 ) |
| 9 |
8
|
imbi2i |
⊢ ( ( 𝑧 ∈ 𝑦 → ¬ ∀ 𝑤 ( 𝑤 = 𝑧 → 𝑤 ∈ 𝐴 ) ) ↔ ( 𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝐴 ) ) |
| 10 |
9
|
albii |
⊢ ( ∀ 𝑧 ( 𝑧 ∈ 𝑦 → ¬ ∀ 𝑤 ( 𝑤 = 𝑧 → 𝑤 ∈ 𝐴 ) ) ↔ ∀ 𝑧 ( 𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝐴 ) ) |
| 11 |
5 10
|
anbi12i |
⊢ ( ( ∀ 𝑤 ( 𝑤 = 𝑦 → 𝑤 ∈ 𝐴 ) ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑦 → ¬ ∀ 𝑤 ( 𝑤 = 𝑧 → 𝑤 ∈ 𝐴 ) ) ) ↔ ( 𝑦 ∈ 𝐴 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝐴 ) ) ) |
| 12 |
11
|
exbii |
⊢ ( ∃ 𝑦 ( ∀ 𝑤 ( 𝑤 = 𝑦 → 𝑤 ∈ 𝐴 ) ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑦 → ¬ ∀ 𝑤 ( 𝑤 = 𝑧 → 𝑤 ∈ 𝐴 ) ) ) ↔ ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝐴 ) ) ) |
| 13 |
3 12
|
sylib |
⊢ ( ∃ 𝑤 𝑤 ∈ 𝐴 → ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝐴 ) ) ) |
| 14 |
2 13
|
sylbi |
⊢ ( ∃ 𝑥 𝑥 ∈ 𝐴 → ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝐴 ) ) ) |