Metamath Proof Explorer


Theorem axregscl

Description: A version of ax-regs with a class variable instead of a wff variable. Axiom D in Gödel,The Consistency of the Axiom of Choice and of the Generalized Continuum Hypothesis with the Axioms of Set Theory (1940), p. 6. (Contributed by BTernaryTau, 30-Dec-2025)

Ref Expression
Assertion axregscl ( ∃ 𝑥 𝑥𝐴 → ∃ 𝑦 ( 𝑦𝐴 ∧ ∀ 𝑧 ( 𝑧𝑦 → ¬ 𝑧𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 eleq1w ( 𝑥 = 𝑤 → ( 𝑥𝐴𝑤𝐴 ) )
2 1 cbvexvw ( ∃ 𝑥 𝑥𝐴 ↔ ∃ 𝑤 𝑤𝐴 )
3 ax-regs ( ∃ 𝑤 𝑤𝐴 → ∃ 𝑦 ( ∀ 𝑤 ( 𝑤 = 𝑦𝑤𝐴 ) ∧ ∀ 𝑧 ( 𝑧𝑦 → ¬ ∀ 𝑤 ( 𝑤 = 𝑧𝑤𝐴 ) ) ) )
4 eleq1w ( 𝑤 = 𝑦 → ( 𝑤𝐴𝑦𝐴 ) )
5 4 equsalvw ( ∀ 𝑤 ( 𝑤 = 𝑦𝑤𝐴 ) ↔ 𝑦𝐴 )
6 eleq1w ( 𝑤 = 𝑧 → ( 𝑤𝐴𝑧𝐴 ) )
7 6 equsalvw ( ∀ 𝑤 ( 𝑤 = 𝑧𝑤𝐴 ) ↔ 𝑧𝐴 )
8 7 notbii ( ¬ ∀ 𝑤 ( 𝑤 = 𝑧𝑤𝐴 ) ↔ ¬ 𝑧𝐴 )
9 8 imbi2i ( ( 𝑧𝑦 → ¬ ∀ 𝑤 ( 𝑤 = 𝑧𝑤𝐴 ) ) ↔ ( 𝑧𝑦 → ¬ 𝑧𝐴 ) )
10 9 albii ( ∀ 𝑧 ( 𝑧𝑦 → ¬ ∀ 𝑤 ( 𝑤 = 𝑧𝑤𝐴 ) ) ↔ ∀ 𝑧 ( 𝑧𝑦 → ¬ 𝑧𝐴 ) )
11 5 10 anbi12i ( ( ∀ 𝑤 ( 𝑤 = 𝑦𝑤𝐴 ) ∧ ∀ 𝑧 ( 𝑧𝑦 → ¬ ∀ 𝑤 ( 𝑤 = 𝑧𝑤𝐴 ) ) ) ↔ ( 𝑦𝐴 ∧ ∀ 𝑧 ( 𝑧𝑦 → ¬ 𝑧𝐴 ) ) )
12 11 exbii ( ∃ 𝑦 ( ∀ 𝑤 ( 𝑤 = 𝑦𝑤𝐴 ) ∧ ∀ 𝑧 ( 𝑧𝑦 → ¬ ∀ 𝑤 ( 𝑤 = 𝑧𝑤𝐴 ) ) ) ↔ ∃ 𝑦 ( 𝑦𝐴 ∧ ∀ 𝑧 ( 𝑧𝑦 → ¬ 𝑧𝐴 ) ) )
13 3 12 sylib ( ∃ 𝑤 𝑤𝐴 → ∃ 𝑦 ( 𝑦𝐴 ∧ ∀ 𝑧 ( 𝑧𝑦 → ¬ 𝑧𝐴 ) ) )
14 2 13 sylbi ( ∃ 𝑥 𝑥𝐴 → ∃ 𝑦 ( 𝑦𝐴 ∧ ∀ 𝑧 ( 𝑧𝑦 → ¬ 𝑧𝐴 ) ) )